The Proton Spin-Dependent Structure Function, g_2 , at Low Q^2 Ryan Zielinski (NH) University of New Hampshire On behalf of the E08-027 Hall A collaboration, Jefferson Lab

Abstract

The Jefferson Laboratory accelerator has been used to great effect in the study of the polarized structure of nucleons. Measurements of the spin-dependent structure functions have been proven to be powerful tools in testing the validity of effective theories of Quantum Chromodynamics. While the neutron spin structure functions, g_1^n and g_2^n , and the longitudinal proton spin structure function, g_1^p , have been measured over a wide kinematic range, the second proton spin structure function, g_2^p , has not. This poster will present the E08-027 (g2p) experiment, which was an inclusive measurement of g_2^p in the resonance region at Jefferson Lab's Hall A. This is the first measurement of g_2^p covering 0.02 GeV² < Q^2 < 0.2 GeV². The experiment will allow us to test the Burkhardt-Cottingham Sum Rule at low Q² as well as extract the longitudinal-transverse generalized spin polarizability and compare it to predictions made by Chiral Perturbation Theory. In addition, the data will reduce the systematic uncertainty of calculations of the hyperfine splitting of hydrogen and extractions of the proton charge radius.

What is g??

- Deviation from point-like scattering in inclusive electron scattering is described by four structure functions
- F1 and F2 are the unpolarized structure functions and g1 and g2 are the spin-polarized structure functions

Motivation

Measurement of g_2^p is useful for ...

- Extract longitudinal-transverse generalized spin polarizability (δ_{LT}) to test Chiral Perturbation Theory (xPT) calculations
- Test Burkhardt-Cottingham (BC) Sum Rule
- Crucial input for hydrogen hyperfine splitting and proton charge radius measurements

Burkhardt-Cottingham Sum Rule

Measure a fundamental spin observable, g_2^p , in the region 0.02 $GeV^2 < Q^2 < 0.20 GeV^2$ for the first time.

 g_2 is sensitive to quark-gluon interactions (higher twist)

Unpolarized

 $\frac{d^2\sigma}{d\Omega dE'}(\downarrow \Uparrow + \uparrow \Uparrow) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left(\frac{2}{M}F_1(x,Q^2)\tan^2\frac{\theta}{2} + \frac{1}{\nu}F_2(x,Q^2)\right)$

Longitudinal

Transverse

 $\frac{d^2\sigma}{d\Omega dE'}(\downarrow \Uparrow - \uparrow \Uparrow) = \frac{4\alpha^2}{M\nu Q^2} \frac{E'}{E} [(E + E'\cos\theta)g_1(x, Q^2) - \frac{Q^2}{\nu}g_2(x, Q^2)] \qquad \frac{d^2\sigma}{d\Omega dE'}(\downarrow \Rightarrow - \uparrow \Rightarrow) = \frac{4\alpha^2\sin\theta}{M\nu^2 Q^2} \frac{E'^2}{E} [\nu g_1(x, Q^2) - 2Eg_2(x, Q^2)]$

Top-View of Hall A

Experimental Setup

Local beam dump for kinematic settings where beam won't reach Hall A dump

Simulated Electron Trajectories

Detector Calibration

Dilution Study

Online Results

Acknowledgements: Spokespeople: A. Camsonne, J.P. Chen, D.Crabb, K.Slifer, Post-Docs: K. Allada, J.Maxwell, V. Sulkosky, J.Zhang, Graduate Students: T. Badman, M. Cummings, C. Gu, M. Huang, J. Liu, P.Zhu