

Abstract:

Arsenic contamination of groundwater is a high-profile problem causing serious arsenic has shown arsenic contamination of groundwater is a high-profile problem causing serious arsenic has shown arsenic contamination of groundwater is a high-profile problem causing serious arsenic has shown arsenic contamination of groundwater is a high-profile problem causing serious arsenic has shown are not contaminated as the series of people in many countries throughout the world, including the USA. Exposure to arsenic has shown are not contaminated as the series of people in many countries throughout the world, including the USA. Exposure to arsenic has shown are not contaminated as the series of people in many countries throughout the world, including the USA. Exposure to arsenic has shown are not contaminated as the series of to be associated with various forms of cancers and compromise the immune system. Many microorganisms have been shown to have high resistance to arsenic and may be used for bioremediation of arsenic in groundwater. One potential way to achieve this is to enhance the oxidation of As(III) is more toxic than As(V). The poor understanding of the mechanism(s) of arsenic resistance significantly limits the application of microorganisms for arsenic bioremediation. In this study, we have screened a collection of thermophilic, spore-forming bacteria in the Geobacillus genus for their resistance to both As(III) and As(V). The ones with excellent resistance will be sequenced to identify the genes responsible for these features and elucidate the underlying pathways and mechanisms, which will provide the basis for engineering and improving these strains for arsenic bioremediation.

Introduction/Background:

Methods:

Geobacillus is a genus of thermophilic bacteria that has been found from various geothermal environments of the Earth. They can survive harsh environments at temperatures as high as 75C and pH range of 2-12. Many are also capable of producing spores. Arsenic is a naturally occurring element found in the Earth's crust. It is classified as a metalloid, which means it has properties of both metals and non-metals and is toxic to most living organisms. It is a great threat to our natural environment.

✤ 64 strains of Geobacillus were used. They were grown on **TBAB** (Tryptose **Blood Agar Base**) Agar plates overnight at 60C.

A colony was picked from the plate to inoculate the seed cultures in **TGP in test tubes.** These cultures were grown at 60 C for 6 - 7 hours.

	-1	2	3	-4	5	6	7	8	- 9.	10	-11	12	
			1		2.1			2.0	10	1207	11		
в							100	100		1000	-		
c							-	-		1	1	11	
D			100	-	-	-6	4	-	44	4	100		4
		1	1		-	-	122		100	10	36		
2		1	1					20		100	100		
F	12.5	200			-	-	-	-	-	-	100	60	3
G	-	-		-	100	-	-		1	200	100	14	
	3	1	110	12	-	-	1	-		100	100	100	
H	84			21				in the second		100	100	2	
	Real P	100	2.				.0		÷ (100	12	
		-	-	100	-		1, 211		11 10	Sec. 1	1.10	-	

The OD of the seed cultures from different strains were checked to make sure the initial **OD of the final culture is roughly the same** after dilution in the 96 well plate.

			As(III)						As(V)					
<u>Results</u>		Control	1mM	2 mM	5 mM	10 mM	15 mM	Control	5 mM	10 mM	20 mM	50 mM	100 mM	
			0	<u>1</u> ;	2	5	<u>10</u> 1	5	0	5 10	<u>)</u> 2	0 5	<u>)</u> 1	00
sample		1	2	3	4	5	6	7	8	9	10	11	12	
W9A25	А	0.256	0.238	0.223	0.157	0.158	0.128	0.195	0.222	0.276	0.307	0.258	0.324	600
9A23	В	0.287	0.158	0.242	0.195	0.198	0.186	0.199	0.24	0.219	0.468	0.23	0.205	600
W9A107	С	0.169	0.133	0.173	0.178	0.132	0.153	0.191	0.188	0.183	0.215	0.226	0.281	600
W9A115	D	0.93	0.232	0.17	0.175	0.148	0.143	0.215	0.186	0.185	0.184	0.219	0.237	600
W9A4	E	0.42	0.187	0.181	0.16	0.15	0.152	0.922	0.633	0.295	0.232	0.236	0.267	600
W9A6	F	0.75	0.131	0.168	0.132	0.137	0.139	0.241	0.201	0.214	0.183	0.279	0.341	600
96A5	G	0.195	0.181	0.186	0.133	0.134	0.139	0.195	0.22	0.297	0.251	0.201	0.228	600
W9A86	Н	0.391	0.348	0.293	0.125	0.128	0.13	0.304	0.254	1.073	0.225	0.203	0.272	600

Concentrations of *Geobacillus* need to be kept constant while the arsenic concentrations are varied in the well plates. A 96 well plate was set up with 1 mL of TGP, and then equal concentrations of 64 strains of *Geobacillus* were used. Sodium arsenite and Sodium dibasic arsenate were used.

***** The 96 well plates were placed in the 60C incubator for 16 hours on a shaker. After 16 hours they were taken out and transferred to a micro plate and place into the microplate reader to have OD measurements taken at 600nm. The data was then transferred to an excel spread sheet and graphed to look at OD vs. varying arsenic concentrations.

Screening *Geobacillus* **Strains** for Arsenic Resistance Michele Mitnitsky Dover High School Dover, New Hampshire **Dr. Kang Wu, Assistant Professor Chemical Engineering**

Results:

Future V	Vork & Disc	ussion:	
64 strain Four pa on their	ns of <i>Geobac</i> tterns have resistance t	<i>cillus</i> have be been identifi o As(III) and	een tested. ied based d As(V).
16 stiboth	rains exhibit As(III) and A	t <mark>high resista</mark> As(V).	nce to
S strate As(II As(V)	ains exhibit l I) but low to).	high resistan) medium re	ice to sistance to
	rains exhibit) but low to I).	high resistant medium resistant	nce to istance to
The gen sequence renderin identifie computa	ome of these ed and the g ng the arsen ed through a ational and o	e strains will genes/pathwa ic resistance combinatio experimenta	l be ays will be n of l methods.
Literatui	re Cited/ Ima	ages Cited:	
∻http://bi 06/Chapte	ology.kenyon. er 06b.html	.edu/courses/b	io1114/Chap
<pre>*http://w seguridad/</pre>	ww.mapfre.co /n129/en/artic	m/fundacion/ le3.html	html/revistas/
* Saluja, l Goel. ''Me in Bacillus Water Sou pag. Web.	Bhoomika, Ab chanism of A Species Isola rces of India.	ohishek Gupta rsenic Resistar ted from Soil '' <i>Ekologija</i> 57	, and Reeta nce Prevalent and Ground 7.4 (2011): n.
 Cuebas, Character Geobacillu Soils.'' <i>Jou</i> 364-71. Web 	Mariola. "Iso ization of an A is Kaustophilo <i>irnal of Basic</i> eb.	olation and Arsenic Resist us Strain from <i>Microbiology</i>	ant Geothermal 51 (2011):
Cuebas, McBride, ''Arsanate Chromoso Kaustophi of Multiple Geobacillu Web.	Mariola, Ara Nathan Yee, a Reduction ar omal Ars Oper ilus." Arsenate Chromosome Is Kaustophilu	mis Villafane, nd Elisabetta nd Expression ons in Geobac e Reduction an al Ars Operons s 157 (2011): 2	Michelle Bin. of Multiple cillus d Expression in 2004-011.