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Introduction

Reversed-shear tokamak configurations have some promising features for im-
proved stability and confinement but may be unstable to Double-Tearing
Modes (DTMs). Nonlinearly these instabilities can potentially cause signifi-
cant plasma motion and disruptions of the annular current ring [2, 3]. Recent
research has shown that equilibrium shear flows can have a stabilizing effect
on both linear and nonlinear DTMs. If the rotation between the two tearing
surfaces is large enough compared to the growth rate (∆ω ' γ) they can-
not couple linearly and the system collapses to two localized eigenmodes [6],
though they may re-couple nonlinearly.
Diamagnetic drifts (characteristed by the frequency ω∗) have the potential
to provide both differential rotation and additional reconnection-layer stabi-
lization [7]. Internal Transport Barriers (ITBs) with significant pressure gra-
dients are frequently observed in reversed-shear configurations [5], suggesting
ω∗ effects are a likely candidate for stabilization. We extend our previous
work on linear ω∗ stabilization into the nonlinear regime of an m = 2, n = 1
DTM in cylindrical geometry using the extended MHD code MRC-3D. While
we do find evidence of nonlinear stabilization, we find the effectiveness is
highly dependent on the location of the pressure profile.

Equilibrium

We use the non-monotic safety factor profile from Ref [4]:

q(r) =q0F1(r)
{
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}
with the constant values: rA = 0.655, w0 = 3.8824, w1 = 0, f1 = −0.238,
r11 = 0.4286, r12 = 0.304, m = 2, n = 1. q0 may be varied near 2.5 to change
the separation D between two q = 2 surfaces. Assuming Bz0 = Rmajor = 10
we find the in-plane field Bθ. For this work we fix q0 = 2.5, giving D ≈ 0.26.
Density profiles are of the form [5]:

N(r) = N0

{
1− (1−Nb)

tanh(r0/δN ) + tanh[(r − r0)/δN ]

tanh(r0/δN ) + tanh[(1− r0)δN ]

}

Where N0 = 1, rs1 ≤ r0 ≤ rs2, and rs1(2)
is the inner (outer) q = 2 surface. The pa-
rameters δN , Nb, and r0 are chosen based
on the desired diamagnetic drifts (ω∗) at
each tearing surface. Temperature T = 1
is uniform.
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MRC-3D Model

E = −vi ×B +
di
ρ

(J×B−∇pe) + ηJ− η2∇2J

∂ρ

∂t
+∇ · (ρv −D∇ρ) = 0

∂ρv

∂t
+∇ · [ρvv −BB + I(p + B2/2)− ρν∇v] = 0

∂Te
∂t

+ v · ∇Te + (γ − 1)Te∇ · v = 0

ps = ρTs, p = pe + pi = (1 + τ )ρTe

Where τ = Ti/Te, γ = 5/3 for an adiabatic equation of state, η is the
resistivity, di is the ion inertial length, ν is the fluid viscosity, and D is a
particle diffusivity parameter. For this work we fix di = 0.1, η = 2e − 5,
and τ = 0. The other dissipation parameters are given small values to aid
numerical stability. Faraday’s Law is used to evolve B.
With these parameters, the diamagnetic drift frequency is given by:

ω∗ =

[
di
∇pe ×B

rρB2

]
θ

Setup of Nonlinear Simulations

Based on our previous studies of this system we expect the linear decou-
pling threshold to lie in the range 0.01 < ∆ωc < 0.05. We use these
bounds as characteristic ‘coupled’ and ‘decoupled’ states and examine
them non-linearly for different locations of the peak pressure gradient. In
addition to localizing the drift at the inner and outer rational surfaces, we
consider a case with equal drifts at both locations to eliminate differential
rotation effects.
The value of ω∗ at the rational surfaces is determined by several different
parameters. For this work we fix di = 0.1. The pressure profile values r0,
δN , and Nb are set as follows for the three configurations of interest.

Equal Drift ω∗ is equal at both surfaces. δN = 0.2 is fixed. The
parameters Nb and r0 are set to achieve the desired drifts: ω =
0.01:[Nb = 0.788,r0 = 0.455]; ω = 0.05:[Nb = 0.298,r0 = 0.41].

Inner Drift The pressure gradient is localized around the inner rational
surface, with nearly no drift at the outer. The parameters δN = 0.1
and r0 = rs1 are fixed. Nb is set to achieve the desired drifts: ω =
0.01:Nb = 0.948; ω = 0.05:Nb = 0.762.

Outer Drift The pressure gradient is localized around the outer rational
surface, with nearly no drift at the inner. The parameters δN = 0.1
and r0 = rs2 are fixed. Nb is set to achieve the desired drifts: ω =
0.01:Nb = 0.9; ω = 0.05:Nb = 0.58.

Nonlinear DTM Simulation Results
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Linear Behavior

DTM behavior depends strongly on both the local characteristics of and
coupling between the two surfaces. Some important features of the linear
phase include:

I γ ∼ ηα for 1/3 ≤ α ≤ 3/5 based on the coupling of the two surfaces [1].

I Flow shearing between the two surfaces can inhibit coupling and decrease
the growth rate, though extremely strong shears may result in additional
resonances [6].

I ω∗ effects have a stabilizing ef-
fect on the mode growth despite
the presence of an ideal instabil-
ity caused by the pressure gradi-
ent, and shown to the right for an
example profile and a range of di
and η.
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Discussion

Our results show the stabilizing effects of diamagnetic drifts on the DTM is
highly dependent on where the peak of ω∗ is located. A common feature of all
the cases examined here is that if the modes are allowed to grow to a point
where they can couple effectively the stabilizing effects are overwhelmed.
Equal (or near equal) strong drifts at both rational surfaces provides some
initial suppression of the mode but are extremely vulnerable to coupling,
suggesting that differential rotation effects are fundamental to efficient sta-
bilization. Locating the drift at the outer resonant surface is much more
effective. It may be possible to completely suppress the outer surface with
a strong enough drift, which might avoid a complete collapse of the current
channel.
While many of these observations are specific to this equilibrium, these sim-
ulations show both that ω∗ drifts can slow the evolution of the non-linear
DTM and that the details of the pressure gradient are critically important.
Conducting a similar study for modes other than the m = 2, n = 1 case
shown here would allow for a better understanding of the ω∗ effects on the
‘explosive’ growth phase of the DTM, which cannot easily be observed in this
equilibrium. Broadening the scope of safety factor profiles may also allow a
survey of experimental data where locations and strengths of ITB pressure
gradients can be correlated with possible DTM driven disruptions.
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