Inferring proximity to the reconnection site via structural changes to the magnetopause caused by asymmetric reconnection.
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Motivation

e Quantities, such as the electron frame dissipation

measure [Zenitani, et. al, 2011], agyrotropy [Scudder

and Daughton, 2008], nongyrotropy [Aunai, et. al,
2013], and others [Pritchett and Mozer, 2009] used
to identify dissipation and diffusion regions do not
uniquely identify the X-line when asymmetries are
present.

 Magnetic reconnection causes structural and
topological changes to the magnetopause.

 Asymmetries between the magnetosheath and
magnetosphere contribute to these structural
changes.

» Case studies of the changes asymmetries imbue on

the reconnection region should reveal universal

characteristics of asymmetric reconnection, if they
exist.

* Observations of asymmetric reconnection by Cluster

motivate simulation and laboratory experiments

studies that reveal a correlation between transition
offsets across the magnetopause and proximity to

the X-line

Case Studies: Cluster
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 Asymmetries modify:
« Reconnecting magnetic field (B )

- Hall magnetic field (B,,)
« lon density (n;) gradient
e lon outflow jet (V, ),

« Normal electric field (Ey)

« Ey = Ey within 33 £ 14 degrees
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- B, reversal can occur over 1-10 A, \;5p

« B,, can have unipolar or bipolar profiles

 The density gradient can occur with B, =0 or
removed by up to 125 A, \;5p

« DC E, reversal occurs from B =0 to either side of

the density gradient

» V, can be observed between B =0 and density
gradient or earthward of the density gradient

Contributions to E, in 2D Simulations
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An Independent Check: Distribution Functions
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* Inflow distributions are elongated along the reconnecting field.

» Separatrix distributions are a mix of inflow and accelerated electrons.
» X-line is identified by a unique delta-shaped distribution.

 |[n the central exhaust several populations are visible.

10 -10 O

 In the magnetosphere, a second population is visible
« Separatrix distributions again are a mix if inflow and accelerated

particles.

Simulations and Experiment

2D PIC with B = 1
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Near the X-line
 B,, n, and E transition simultaneously

 Simultaneous transitions occur only within 5d, of
the X-line

* lon outflow is earthward of the density gradient

3D PIC with B = 1
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Downstream

* n develops a dip along the magnetosheath
separatrix

 Closer to the X-line, where the dip is
approximately equal to the distance between
separatrices, a plateau is observed.

* lon outflow crosses the separatrix into the
exhaust

 DC electric field reversal is offset from B, =0

MRX Experiment with Bg =0
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 Near the X-line, transitions are still
simultaneous with the B, reversal

2D Simulation with Bg =0
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Differences between Bg =0 and Bg =1

* Density dip is present at the X-line

* No ion outflow earthward of the X-line

 Electric field maintains an (asymmetric) bipolar
structure that crosses zero in the vicinity of B, =0.

« X-line is not uniquely identified by a particular shape.
* The exhaust distributions show electrons accelerated along .

B, =1
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- Current sheet broadens, and so does Eg. - . E,, points sunward at MSH separatrix and is
- Mozer, et. al [2008] shows E,, modified to a no longer asymmetrically bipolar.
unipolar structure.
* Flow along separatrices maintains asymmetric,
bipolar E,.
 Pressure gradients opposes E,..
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In close proximity to the X-line, Cluster observes:
 Enhanced currents (combined product)
 Triangular shaped distributions.

Conclusions

o Transitions in B, n, and E, across the magnetopause are correlated to proximity to
the X-line.

« Only within 5 de of the X-line to transitions occur together. This is true for both strong
and weak guide-field cases.

e Downstream, transitions separate from one another.
e For Bg =1.

 lon outflow is observed upstream from the X-line.

* DC electric field reversal depends on location of outflow jet.

» At the X-line, density transitions directly from high to low.
 Electron distributions uniquely identify the EDR — serve as independent check.
 Cluster event in close proximity to the X-line exhibits:

 Triangular electron distributions.

 Enhanced currents in combined FGM & SCM data product.
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