Motivation

- Quantities, such as the electron frame dissipation measure [Zenitani, et. al, 2011], agyrotropy [Scudder and Daughton, 2008], nongyrotropy [Aunai, et. al, 2013], and others [Pritchett and Mozer, 2009] used to identify dissipation and diffusion regions do not uniquely identify the X-line when asymmetries are present
- Magnetic reconnection causes structural and topological changes to the magnetopause.
- Asymmetries between the magnetosheath and magnetosphere contribute to these structural changes.

exist.

the X-line

A Mi Am MW WM more 06:22:30 06:23:00 06:23:30 06:24:00 -30 -20 -10 0 Ν (λ_{i,MSP}) -10 -5 0 5 Ν (λ_{ί,MSP}) –10 –5 0 5 10 N (λ_{i,MSP}) -150-100 -50 0 Ν (λ_{i,MSP})

- Asymmetries modify:
- Reconnecting magnetic field (B₁)
- Hall magnetic field (B_M)
- Ion density (n_i) gradient
- Ion outflow jet (V_{il}),
- Normal electric field (E_N)
- $E_x = E_N$ within 33 ± 14 degrees

Case Studies: Cluster

- the density gradient
- V_{il} can be observed between B_{l} =0 and density gradient or earthward of the density gradient

Near the X-line

- B_1 , n, and E_x transition simultaneously
- Simultaneous transitions occur only within 5d_e of the X-line
- Ion outflow is earthward of the density gradient

Downstream

- separatrix
- Closer to the X-line, where the dip is separatrices, a plateau is observed.
- exhaust

Inferring proximity to the reconnection site via structural changes to the magnetopause caused by asymmetric reconnection.

¹Matthew Argall (matthew.argall@wildcats.unh.edu), ²Chen, L-J., ¹Torbert, R.B., ³Daughton, W., ⁴Yoo, J. S., ⁴Yamada, M. ¹University of New Hampshire, ²NASA Goddard Space Flight Center, ³Los Alamos National Laboratory, ⁴Princeton Plasma Physics Laboratory

- Separatrix distributions are a mix of inflow and accelerated electrons.
 - X-line is identified by a unique delta-shaped distribution.
 - In the central exhaust several populations are visible.

• n develops a dip along the magnetosheath

approximately equal to the distance between

Ion outflow crosses the separatrix into the

 Near the X-line, transitions are still simultaneous with the B₁ reversal

 $B_{\alpha} = 0$

- Electric field maintains an (asymmetric) bipolar structure that crosses zero in the vicinity of $B_1 = 0$.

Contributions to E_N in 2D Simulations

- Inflow distributions are elongated along both B_x and B_y .
- Separatrix distributions again are a mix if inflow and accelerated particles.
- X-line is not uniquely identified by a particular shape.
- The exhaust distributions show electrons accelerated along y.

- Differences between $B_a = 0$ and $B_a = 1$
- Density dip is present at the X-line
- No ion outflow earthward of the X-line

the X-line.

- Only within 5 de of the X-line to transitions occur together. This is true for both strong and weak guide-field cases.
- Downstream, transitions separate from one another.
- For $B_a = 1$:
- Ion outflow is observed upstream from the X-line.
- DC electric field reversal depends on location of outflow jet.
- At the X-line, density transitions directly from high to low.
- Electron distributions uniquely identify the EDR serve as independent check.
- Cluster event in close proximity to the X-line exhibits: • Triangular electron distributions.
- Enhanced currents in combined FGM & SCM data product.

References

- Aunai, N., et. al, Phys. Plasmas, 2013 doi:10.1063/1.4820953 • Malakit, K., et. al, PRL, 2013 doi:10.1103/PhysRevLett.111.135001 • Mozer, F. S., et. al, GRL, 2008 doi:10.1029/2007GL033033
- Pritchett, P. L., & Mozer, F. S., Phys. Plasmas, 2009 doi:10.1063/1.320694 • Scudder, J., & Daughton, W., JGR, 2008 doi:10.1029/2008JA013035 • Zenitani, S., et. al, 2011, Phys. Plasmas, 2011 doi:10.1063/1.3662430

<u>X-line</u>

- Guide field and E_C create v_{ExB} drift upstream
- V_{ExB} interacts with B_a to enhance E_C .
- Tilt of separatrices causes electron flow along M

Downstream

- Ion outflow crosses X-line and offsets E_C reversal
- E_H points sunward at MSH separatrix and is no longer asymmetrically bipolar.

Conclusions

• Transitions in B_1 , n, and E_N across the magnetopause are correlated to proximity to

Acknowledgments

UNH research supported in part by NASA grants NNX11AH03G and MMS-499878Q

Research at UNH and at NASA GSFC was supported in part by NSF grant AGS-1202537, NASA grant NNX13AK31G, and the Theory and Modeling Program of the MMS mission.

Research at PPPL with MRX is supported by NASA grant No. NNH11AQ45I and DOE contract No. DE-AC0209CH11466.

Simulations were performed with support from NASA's Heliophysics Theory Program