Adaptability of Irrigation to a Changing Monsoon in India: How far can we go?

Esha Zaveri^{1*}, Danielle S. Grogan^{2*}, Karen Fisher-Vanden¹, Steve Frolking², Douglas H. Wrenn¹, Robert E. Nicholas¹ Pennsylvania State University, State College, PA, ² University of New Hampshire, Durham, NH

I. Research Question

How will climate change alter the demand for unsustainably pumped groundwater to meet India's irrigation needs?

- India is the world's largest groundwater user
- Agriculture in India has come to depend on groundwater pumping
- Current levels of groundwater use are unsustainable, and have caused significant declines in groundwater levels
- Irrigation water requirements are closely linked to monsoon rainfall

Modeling Method:

Step 1: Econometric model quantifies how irrigation decisions have changed historically (1970-2005) in response to climate, specifically monsoon rainfall.

Step 2: Build projections of irrigated area based on future climate projections, assuming other variables (e.g., population density, policies) remain constant.

Step 3: Water balance model estimates total irrigation water demand and unsustainable water demand using inputs from Step 2.

II. Approach

Combined Econometric-Hydrologic Model

III. Results

Irrigation water demand by source

pemand for unsustainably pumped groundwater may increase 50% to 100% by the year 2050.

Range is due to climate model uncertainty.

*edz109@psu.edu Department of Agricultural Economics, Sociology and Education Pennsylvania State University *danielle.grogan@wildcats.unh.edu Earth Systems Research Center University of New Hampshire

University
of New Hampshire