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Introduction

The Logistic regression model assume that, given a covariate
x ∈ Rd , the model assumes

P(y = 1) = p(x;β) =
exp(xTβ)

1 + exp(xTβ)
, (1)

where y ∈ {0, 1} is the response variable; β is a d × 1 vector
of unknown regression parameters. For massive data (n is
large), it is computationally difficult to find the MLE, β̂. The
aim of this work is to approximate the MLE for logistic
regression efficiently to deal with Big Data.

Leveraging methods

I Leveraging methods are designed under a sub-sampling
framework, in which we sample a small proportion of the data
from the full sample, and then used as a surrogate to perform
intended computations for the full sample.

I The key of the success of the leveraging methods relies on
effectively constructing nonuniform sampling probabilities so
that influential data points are to be sampled with high
probabilities.

I All existing literature on leveraging methods are on solving the
OLS in linear regression with Big Data.

I The time complexity of solving OLS using the full data is
O(nd 2).

I Leveraging methods often has a time complexity of O(nd).
I The time complexity of for solving the MLE using the full data

is O(ζnd 2), where ζ is the number of iterations required for
the optimization procedure to converge.

I Our method has a time complexity of O(nd).

General Sub-sampling Algorithm

I Sub-sampling.
. Assign sampling probability {πi}ni=1 for all data points.
. Draw a random sub-sample of size r � n from the full

sample according to the probability {πi}ni=1, denoted as
(X∗, y∗).

. Record the corresponding sampling probabilities for the
sub-sample {π∗k}, k = 1, ..., r .

I Estimation.
. Maximize a weighted log-likelihood to get an estimate β̃, of
β̂, i.e., solve:

arg max
β∈Rd

r∑
i=1

1

π∗i
{y∗i log p(x∗i ;β) + (1− y∗i ) log(1− p(x∗i ;β))}

Theorem: asymptotic properties

Let Fn be the full data and β̂ be the MLE using Fn. Under
Assumptions A1-A3, given Fn, as n, r →∞,

V−1/2(β̃ − β̂)
L−→ N(0, I ), (2)

where V = M−1
X VbM

−1
X ,

MX =
n∑

i=1
wixixTi ,

wi = p(xi ; β̂){1− p(xi ; β̂)} and

Vb = r−1
n∑

i=1

{
yi − p(xi; β̂)

}2
xixTi /πi .

Moreover,

V = Op(r−1), and E (β̃ − β̂|Fn) = Op(r−1).

Theorem: A-optimal sub-sampling

The variance dominates the mean-squared error, and MX is
independent of πi . So we choose to minimize tr(Vb) as an
optimal criterion.
If the sub-sampling probabilities are chosen such that

πiOPTA =
|yi − p(xi ; β̂)|‖xi‖
n∑

j=1
|yj − p(xj ; β̂)|‖xj‖

, i = 1, 2, ..., n, (3)

then tr(Vb) attains its minimum.

Remarks

The optimal sub-sampling probabilities are determined by two
factors.

I Covariate information represented by ‖xi‖:
I Discrimination difficulty represented by |yi − p(xi ; β̂)|
. If yi = 0;

πiOPTA ∝ p(xi ; β̂)‖xi‖
. If yi = 1

πiOPTA ∝ {1− p(xi ; β̂)}‖xi‖
. This echos the result of Silvapulle (JRSSB 1981).

Expected A-optimal sub-sampling

Another way is to minimize E{tr(Vb|X)}. If the
sub-sampling probabilities are chosen such that

πiOPTB =

√
p(xi ; β̂){1− p(xi ; β̂)}‖xj‖∑n

j=1

√
p(xi ; β̂){1− p(xi ; β̂)}‖xj‖

, i = 1, 2, ..., n,

then E{tr(Vb|X)} attains its minimum.

Remarks

The optimal SSP are determined by:
I Covariate information represented by ‖xi‖:
I Discrimination difficulty: p(xi ; β̂){1− p(xi ; β̂)}:
. it reaches its maximum when p(xi ; β̂) = 0.5
. The closer to 0.5 the value of p(xi ; β̂) is, the more

difficult it’s to classify these data points into their true
categories, so more sub-sampling probabilities are put
into these data points.

Two step algorithms

The optimal weight choices depend on β̂, we propose
the following two-step algorithm.

I Sampling for a sub-sample of size r1 by SRS, obtain an
estimate β̃1 and estimate the optimal SSPs.

I Sampling a sub-sample of size r2 with SSPs calculated in
Step 1, and obtain the estimate β̃.

Simulation settings

In addition to the weights proposed, we also consider the
following sub-sampling probabilities (SSP) for
comparison.

SSP C: πi ∝ |yi − p(xi ; β̂)|
SSP D: πi ∝ |yi − p(xi ; β̂)|‖xi‖∞

A relative MSE is a MSE scaled by the MSE of the
estimator from a uniform sub-sampling with the same
sub-sample size r .

MSE of the estimator from a proposed SSP

MSE of the estimator from a uniform Sampling

Results for simulation studies
Simulation Experiments

Relative MSEs when r = 400

0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

r1/r

R
el
at
iv
e
M
S
E

A
B
C
D

0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

r1/r

R
el
at
iv
e
M
S
E

A
B
C
D

0.4 0.6 0.8 1.0

0
.4

0.
6

0
.8

1.
0

r1/r

R
el
at
iv
e
M
S
E

A
B
C
D

0.4 0.6 0.8 1.0

0
.4

0.
6

0
.8

1.
0

r1/r

R
el
at
iv
e
M
S
E

A
B
C
D

Zhu, Wang & Ma (UNH) Logistic with Big Data 23 / 36

x is Normal x is Lognormal

x is T x is Mixnormal

Results for income data
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Results for SUSY data

To distinguish between a process where
new supersymmetric particles are
produced and a background process.
The sample size n = 5, 000, 000 and the
data file is 2.4GB. We used a
sub-sample of r = 1000.

Features used SSP A SSP B SSP C SSP D
First 8 0.827 0.826 0.831 0.825
Last 10 0.832 0.830 0.830 0.830

All 0.850 0.851 0.853 0.852

Comparisons with Deep Learning:
Our method DL

AUC=0.853 AUC=0.88

r = 1000 n = 5, 000, 000

Logistic model

A five-layer neural
nets with 300 hidden
units in each layer

R with package BB

Combinations of pre-
training methods,
network architec-
tures, initial learning
rates, and regular-
ization methods

A normal PC with an
Intel I7 processor and
8GB memory

Machines with 16
Intel Xeon cores, an
NVIDIA Tesla C2070
graphics processor,
and 64 GB memory.
All neural networks
were trained using
the GPU-accelerated
Theano and Pylearn2
software libraries
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