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Introduction Theorem: asymptotic properties

The Logistic regression model assume that, given a covariate Let F,, be the full data and ,@ be the MLE using F,. Under The optimal SSP are determined by: S v
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where y € {0, 1} is the response variable; 3 is a d x 1 vector n T The closer to 0.5 the value of p(x;; 3) is, the more ok
of unknown regression parameters. For massive data (n is Mx = ; ARSRAS difficult it's to classify these data points into their true E_ o
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" wo step algorithms
Moreover, Resuits for SUSY data

Leveraging methods V= Op(r_l), and  E(8 — B|-’Tn) = Op(r_l)- The optimal weight choices depend on ,@ we propose
the following two-step algorithm.

To distinguish between a process where
new supersymmetric particles are

produced and a background process.

The sample size n = 5,000,000 and the
. . . . _ . . B . ’ ’
The variance dominates the mean-squared error, and My is Sampling a sub-sample of size r, with SSPs calculated in data file is 2 4GB. We used

independent of ;. So we choose to minimize tr(V}) as an Step 1, and obtain the estimate (3.
optimal criterion.

Leveraging methods are designed under a sub-sampling
framework, in which we sample a small proportion of the data
from the full sample, and then used as a surrogate to perform
intended computations for the full sample.

Sampling for a sub-sample of size r; by SRS, obtain an
estimate (3; and estimate the optimal SSPs.

Theorem: A-optimal sub-sampling

The key of the success of the leveraging methods relies on sub-sample of r = 1000.

effectively constructing nonuniform sampling probabilities so I . o
the sub-sampling probabilities are chosen such that iImulation settings
that influential data points are to be sampled with high PRSP . Featu.res used SSP A SSP B SS5P C S5P D
probabilities. TopTA — n|y,- — p(xi; B)|||1xi| i=12..n (3) In addition to the weights proposed, we also consider the First 8 0.827 0.826 0.831 0.825
All existing literature on leveraging methods are on solving the - plx:: ) Ix: following sub-sampling probabilities (SSP) for Last 10 0.832 0.830 0.830 0.830
g ging g 2. 1y = p(x;: B)I[xj]]
OLS in linear regression with Big Data. j=1 comparison. All 0.850 0.851 0.853 0.852
The time complexity of solving OLS using the full data is then tr(V}) attains its minimum. SSP C: m; o |y; — p(xi; B) Comparisons with Deep Learning:
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The time complexity of for solving the MLE using the full data | | o | st ator from a uniform sub—samylin Wb the came r = 1000 n = 5,000,000
is O(Cnd?), where ( is the number of iterations required for The optimal sub-sampling probabilities are determined by two cub-samole sive PINS A five-layer neural
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