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Cartoon of 2D reconnection.
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We are motivated to determine how, where, and when N 8 e o L. |3 linedistribution,  structure, consistent with [9],
electrons are energized during magnetic reconnection. | = | . Ay e swirls & arcs i
Recent Cluster observation and particle-in-cell (PIC)
simulation studies have demonstrated the use of particle
distribution functions as in situ observables of the
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reconnection process [1,2]. Electron distribution functions [ D,,, and density n,, indicative  1al... TR — T,,/T,,> 1 only for e- outflow jets, unlike [4].
offer the kind of “smoking-gun’ evidence of EDR _ of electron meandering motion. “wie ** " — No inflow fragmentation, small E,, variations.
acceleration and heating mechanisms required for : :
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electron outflow jet, and exhaust transition regions, is still : N 00 o_oo_u.oﬁ are still Bmm.s@:woa near
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of electron distributions in each of these regions, and the . 710 05 00 05 10 Y/C have a shifted-ellipsoidal shape.
implications for electron acceleration and heating. We . . N I T R e e e T e e T N
address the robustness of our predictions [3,4] by varying Asymmetric, %w =0 ,. : .
both the guide field and mass ratio and considering 0100 [T T
asymmetric reconnection geometries. Our work advances
the understanding of electron distribution evolution
throughout the EDR, setting a foundation to successfully
interpret the high resolution electron data and 3D wave

Knowledge of the spatiotemporal evolution of electron
distributions and their nonlinear wave signatures
throughout the EDR, including the inflow edge, X-line,
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. e pmoaed ost ewid 1153F — Swirling triangular structures both  — “Horseshoe” structure in v,-v, similar to
measurements anticipated from MMS. L _ st before and after peak reconnection. [10], but spread over more gyrophase.
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PIC Simulations

Triangular electron distributions are found 1n the electron diffusion region for real mass
ratio symmetric and asymmetric PIC simulations, suggesting that the acceleration and
heating mechanisms explained in [3] are a general characteristic of the EDR in anti-

10240 x 2560 parallel reconnection. However, the triangular structure 1s lost for guide fields stronger
(80d; x 20d.) than some 0.03 <B_, /B, <0.4, which 1s yet to be determined.
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¢ Self-consistent particle tracing for ¢ Dependence on: w,,/Q  andv,, /c,e.g.
symmetricl’ | 5120 > 5120 PIC E & B fields to further what is the B, guide field threshold?
(20d; > 20d;) understand electron energization.

| ¢ Investigate nonlinear wave signatures in PIC to
asymmetric 3072 % 2048 ¢ Analyze e distribution functions interpret anticipated high resolution MMS data

Myisr ! Pgsp = 8 (75d; * 25d,) predicted by 3D PIC simulations. from FPI and FIELDS instruments.
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