 [1] Chen et al. (2008), J. Geophys. Res., 113, A12213. [2] Wang et al. (2014), J. Geophys. Res., 119, 9601-9623. [3] Shuster et al. (2015), Geo. Res. Lett., 42, 2586-2593. [4] Shuster et al. (2014), Geo. Res. Lett., 41, 5389-5395. [5] Bessho et al. (2014), Geo. Res. Lett., 41, 8688-8695. [6] Ng et al. (2012), Phys. Plasmas, 19, 112108. [7] Le et al. (2013), Phys. Rev. Lett., 110, 135004. [8] Jara-Almonte et al. (2014), Phys. Plasmas, 21, 032114. [9] Chen et al., (2011), Phys. Plasmas, 18, 012904. [10] Hesse et al. (2014), Geo. Res. Lett., 41, 8688-8695. 	References	
Research at UNH is supported in part by the NSF grants PHY-0903923 and AGS-1202537, and the NASA grant NNX11AH03G.	Acknowledgements	

 Analyze e⁻ distribution functions interpret anticipated high resolution MMS dates of the predicted by 3D PIC simulations. from FPI and FIELDS instruments. 	3000	3072×2048 $(75d_i \times 25d_i)$	2	0	100	asymmetric $n_{MSH} / n_{MSP} = 8$
PIC E & B fields to further what is the $B_{g,max}$ guide field threshold? understand electron energization.	400	5120×5120 $(20d_i \times 20d_i)$	N	0.4	1836	symmetric ^[7]
· Colf consistent nontials tracing for · Donandance on: or / D and / a or [0]		1120-1120-1				
Future Work	400	5120×5120 (20 <i>d</i> . × 20 <i>d</i> .)	2	0	1836	symmetric ^[7]
parallel reconnection. However, the triangular structure is lost for guide fields stronger than some $0.03 < B_{g,max} / B_0 < 0.4$, which is yet to be determined.	600	10240×2560 ($80d_i \times 20d_i$)	2	0, 0.03	400	symmetric ^[3,4]
Triangular electron distributions are found in the electron diffusion region for real mass ratio symmetric and asymmetric PIC simulations, suggesting that the acceleration and heating mechanisms explained in [3] are a general characteristic of the EDR in anti-	# of particles per cell	# of cells (in d _i)	ω_{pe} / Ω_{ce}	$B_{ m g}$ / $B_{ m 0}$	m _i /m _e	Geometry

the understanding of electron distribution evolution throughout the EDR, setting a foundation to successfully interpret the high resolution electron data and 3D wave measurements anticipated from MMS.

PIC Simulations

Conclusions

[8],

PIC

to

data

"Smoking-Gun" Elucidating the \bigcirc **P**S \mathbf{G} Reconnection:) the N N N N

¹Space Naoki ³Los Alamos National Lab ²Goddard Space Jason Shuster¹ Bessho², Science J) Center, Guanlai Flight Ce (jrf63@v **(** ato itth SOS **e**n Ο elt ц С Q illia SO an XICO b ham, Í Ó コ O bert¹, Hampshire, Shan Wang¹ U.S.A.

