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1. Introduction
We study the statistics of turbulence in a numerical simulation of the RMHD equations, which
describe strong Alfvénic turbulence:

∂tz
±
⊥ ∓ vA∂zz

±
⊥ + z∓⊥ · ∇⊥z

±
⊥ = −∇⊥p, (1)

The critical balance conjecture [5] states that the chararacteristic nonlinear τnl and linear τA
times, defined as

τ±nl
.
=

λ

δz∓⊥ sin θ
, τ±A

.
=
l±‖

vA
, (2)

are comparable at each scale. We present numerical evidence that in strong Alfvénic
turbulence, the critical balance principle is scale invariant, in the sense that the
probability distribution of the ratio of these times, χ±

.
= τ±A /τ

±
nl is independent of

scale. This result only holds if the local alignment of the Elsasser fields is taken into account in
calculating the nonlinear time.
The scale-invariance of critical balance (while all other quantities of interest are strongly
intermittent, i.e., have scale-dependent distributions) suggests that it is the most robust of the
scaling principles used to describe Alfvénic turbulence.
We examine the joint statistical distribution of δz±⊥, l±‖ and θ as a function of λ using data from a

10243 numerical simulation, described in detail in [6], and thus we may construct the distributions
of τ±A , τ±nl and χ±.

2. Definitions
The fluctuation amplitudes are measured in terms of increments

δz±⊥
.
= |δz±⊥|

.
= |z±⊥(r0 + r⊥)− z±⊥(r0)|, λ

.
= |r⊥|, (3)

where r0 is an arbitrary point and r⊥ the separation in the plane perpendicular to B0. The
alignment angle is given by

sin θ
.
=
|δz+⊥ × δz

−
⊥|

δz+⊥δz
−
⊥

. (4)

The parallel coherence length l±‖ corresponding to a perpendicular separation r⊥ is defined as the

distance along the perturbed field line at which the Elsasser-field increment is the same as δz±⊥
[4, 7, 8]:∣∣∣z±⊥ (r0 + (r⊥ + l±‖ b̂loc)/2

)
− z±⊥

(
r0 + (r⊥ − l±‖ b̂loc)/2

)∣∣∣ = |z±⊥(r0 + r⊥)− z±⊥(r0)|,

where b̂loc = Bloc/|Bloc| is the unit vector along the “local mean field”
Bloc

.
= B0 + [b⊥(r0) + b⊥(r0 + r⊥)]/2.

At each scale λ, the joint probability distribution fuction (PDF) P (δz+⊥, δz
−
⊥, θ, l

+
‖ , l
−
‖ |λ) contains

all the information one customarily requires to characterize the structure of Alfvénic turbulence.

3. Intermittency

A standard question of all turbulence studies is
how the increments δz+⊥ depend on λ. The
distribution of δz+⊥ is clearly not
scale-invariant, as is made manifest by
Fig. 1, where we show P (δz+⊥|λ) rescaled to δz

+
⊥

at each λ.
The salient feature of this PDF is that it
broadens at smaller λ — a classic case of
intermittency understood as scale dependence of
the distribution’s shape. This broadening may be
consistent with a lognormal [9] or a log-Poisson
[3] distribution.
Equivalently, the scaling of δz+⊥ depends on
which moment of this distribution one uses.
Fig. 1 (inset) shows the scalings of the rms

increment S
1/2
2 (λ)

.
= 〈(δz+⊥)2|λ〉1/2, the

geometric mean δz
+
⊥
.
= exp〈ln δz+⊥|λ〉, and the

4th-order increment, S
1/4
4 (λ)

.
= 〈(δz+⊥)4|λ〉1/4.

0 2 4 6 8 10

δz +
⟂/δz

+

⟂

10-4

10-3

10-2

10-1

100

ℙ
( δz

+ ⟂
/ δ
z
+ ⟂

)

10-1 100

λ

10-1

100

λ1/4

λ1/3
S

1/4
4 (λ)

S
1/2
2 (λ)

δz
+

⟂

Figure 1 : PDF of δz+⊥ rescaled to δz
+

⊥
.
= exp〈ln δz+⊥|λ〉,

for a range of scales from λ = 0.15 (blue/dark) to
λ = 0.80 (red/light). Inset: the rms (2nd-order) increment

S
1/2
2 (λ)

.
= 〈(δz+⊥)2|λ〉1/2 (red dashed line), the 4th-order

increment, S
1/4
4 (λ)

.
= 〈(δz+⊥)4|λ〉1/4 (black dash-dotted

line), and the “typical” increment δz
+

⊥ (blue solid line); the
slopes λ1/4 (Boldyrev [2]) and λ1/3 (Goldreich–Sridhar [5])
are given for reference; all increments are normalized to the
overall rms fluctuation level.

4. Characteristic times
The distribution of τ±A = l±‖ /vA is simply the distribution of the parallel coherence length. Its

geometric mean is shown in Fig. 2(a, inset) and scales like τ+A
.
= exp〈ln τ+A 〉 ∝ λ1/2, consistent

with [2].

The PDFs of the rescaled quantity τ+A /λ
1/2 for a range of λ are shown in

Fig. 2(a): at smaller τ+A /λ
1/2 there is a scale-invariant collapse, but at larger

values, the PDF becomes non-scale-invariant — with a systematically shallower tail at
larger λ.
The geometric mean of the nonlinear time is shown in Fig. 2(b, inset) and, like τ+A, scales as
τ+nl

.
= exp〈ln τ+nl |λ〉 ∝ λ1/2.

The PDFs of the rescaled inverse nonlinear time, λ1/2/τ+nl , are shown in Fig. 2(b).
There is a scale-invariant collapse at small values of the rescaled quantity (i.e.,
relatively longer τnl), and a non-scale-invariant tail at larger values, systematically
shallower at smaller λ.
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Figure 2 : PDFs of (a) τ+A
.
= l+‖ /vA and (b) the inverse of τ+nl [Eq. (2)], rescaled by λ1/2, for a range of scales from

from λ = 0.15 (blue/dark) to λ = 0.80 (red/large). Insets: “Typical times” (a) τA
.
= exp〈ln τ+A 〉 and (b)

τnl
.
= exp〈ln τ+nl〉 vs. λ with λ1/2 and λ2/3 scalings shown for reference.

5. Refined critical balance
The behaviour of the distribution of the nonlinear time fits neatly with that of the
distribution of the Alfvén time. The cores of both distributions (roughly, τ+A /λ

1/2 . 3
and λ1/2/τ+nl . 3 in Fig. 2) are scale invariant. On the other hand, their tails vary with λ in
opposite senses, with the tail of τ±A /λ

1/2 (λ1/2/τ±nl ) becoming steeper (shallower) as λ decreases.
Because of this, the distribution of their product χ±, defined as

χ±
.
=
τ±A
τ±nl

=
l±‖ δz

∓
⊥ sin θ

vAλ
, (5)

does not change at all: P (χ+|λ), shown in Fig. 3, is independent of λ across the
inertial range and all its moments are constant: e.g., 〈χ+|λ〉 is shown in the inset of
Fig. 3 (alongside it, we show the mean nonlinearity parameter without the sin θ factor,
〈χ+/ sin θ|λ〉; it is not scale-independent, which emphasizes that alignment is an essential
ingredient of the RCB).

0 2 4 6 8 10

χ+

10-3

10-2

10-1

100

101

ℙ
( χ

+
)

10-1 100

λ

100

〈
χ+/sinθ

〉

〈
χ+

〉

Figure 3 : PDF of χ+ (defined by Eq. (5)) for a range of scales from λ = 0.15 (blue/dark) to λ = 0.80 (red/large).
Data collapse is nearly perfect. Inset: the mean nonlinearity parameter 〈χ+〉 vs. λ (red/solid) and the same without
account for alignment, 〈χ+/ sin θ〉 (black/dashed).

6. Alignment

At every scale λ, the fluctuation amplitude δz∓⊥ and the alignment angle θ turn
out to be anticorrelated (cf. [1]). This is evident in the conditional PDF

P (sin θ|δz+⊥/δz
+
⊥, λ), shown in Fig. 4. Fluctuations whose amplitudes are large relative to the

“typical” value δz
+
⊥ tend to be well aligned, whereas the weaker fluctuations (δz+⊥/δz

+
⊥ . 1) are

unaligned. The alignment of the stronger fluctuations appears to get statistically “tighter” at
smaller scales. Thus, for the stronger fluctuations, the nonlinear interaction is reduced by
alignment more than for the weaker ones.
The anticorrelation between alignment and amplitude is somewhat at odds with Boldyrev’s
interpretation of the alignment angle as determined by the angular wander within any given
fluctuation (θ ∼ δb⊥/B0), but rather suggests that alignment is caused by dynamical
shearing of a weaker Elsasser field by a stronger one [3].
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Figure 4 : PDF of the alignment angle θ conditional on the fluctuation amplitude δz+⊥ relative to “typical” value

δz
+

⊥
.
= exp〈ln δz+⊥|λ〉, viz., P (sin θ|δz+⊥/δz

+

⊥, λ), plotted for four representative scales λ (as shown).

7. Conclusion
The results presented above imply that the structure of Alfvénic turbulence is set by two
fundamental effects: establishment of a critical balance, which occurs in a scale-invariant fashion
(probably due to the upper limit on the parallel coherence length of turbulent fluctuations
imposed by causality over a nonlinear decorrelation time), and systematic alignment of the
higher-amplitude fluctuations (probably due to dynamical mutual shearing of Elsasser fields). The
first of these results suggests that critical balance — quantitatively amounting, as we have argued,
to the RCB conjecture — is perhaps the most robust and reliable of the physical principles
undepinning scaling theories of Alfvénic turbulence.
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