0 Absra • Residual Stress can change material properties. • Tempered Glass is an excellent example, with the glass pressed in one direction allows an increased resistance to shattering in another direction. • EM Forming can allow for a highly controlled stress application. Potentially allowing for solid state welds between very dissimilar substances. Ceramics

- The zone in which ceramic deforms without failing is very small and at very high pressure.
- Ceramic varies in its response to EM fields but when centered can be impacted by a metal tube.
- Ceramics are traditionally hard, brittle, stiff and fail abruptly at high pressure. Controlled impact may affect these properties.

Impacted metal samples on the left, unimpacted ceramic samples on the right.

Imparting Residual Stresses in Ceramics via High Speed Impact Andy Mitchell¹, Ali Nassiri², Kyle Reisert², Brad Kinsey²

¹Hillsboro-Deering High School, Hillsboro, NH ²University of New Hampshire Mechanical Engineering Dept, Durham NH

Project Objective: To perform a feasibility study of imparting residual stress in Alumina ceramics through high-speed impacts in a controlled Electromagnetic (EM) environment.

Sponsors/ Partners: National Science Foundation (Grant ENG-1132648) **Special Thanks:** James Krzanowski, Tim Roemer, Alex Wojtowicz

Ο U

- whether permanent induced stress in Alumina can be induced.
- The strength of the EM formation field and the (as of now) lack of a thorough basis of stressed Alumina in x-ray diffraction makes a definitive answer to this question not obtainable.
- It should be possible to obtain a measurement of residual stress using these methods.

V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, M. Kleiner "Electromagnetic Forming" Journal of Materials Processing Technology 211 (2011) 787-829 M.W.Chen, J.W.McCauley, D.P.Dandekar, N.K.Bourne

"Dynamic plasticity and failure of high-purity alumina under shock loading" *Nature Materials* 5, 614 - 618 (2006)