

Signatures of Magnetic Reconnection in 3D Electric Field MMS Data: Elucidating Particle Energization Throughout the Diffusion Region

Jason R. Shuster¹ (jrf63@wildcats.unh.edu), Matthew R. Argall¹, Guanlai Li¹, Roy B. Torbert^{1,2}, Li-Jen Chen³, Robert E. Ergun⁴, Per-Arne Lindqvist⁵, Goran Tage Marklund⁵, Yuri V. Khotyaintsev⁶, Christopher T. Russell⁷, Werner Magnes⁸, Olivier Le Contel⁹, Hans Vaith¹, Craig J. Pollock³, Barbara L. Giles³

¹Space Science Center, University of New Hampshire, Durham, NH, USA. ²Southwest Research Institute, San Antonio, TX, USA. ³NASA Goddard Space Flight Center, Greenbelt, MD, USA. ⁴University of Colorado, Boulder, CO, USA. ⁵KTH Royal Institute of Technology, Stockholm, Sweden. ⁶IRF Swedish Institute of Space Physics, Uppsala, Sweden. ⁷University of California, Los Angeles, CA, USA. ⁸Space Research Institute, Austrian Academy of Sciences, Graz, Austria. ⁹Laboratory for Plasma Physics, Paris, France.

Background

Motivation and Context

How can magnetic reconnection occur in a *collisionless plasma?* This outstanding mystery fueled the successful launch of NASA's Magnetospheric Multiscale (MMS) mission. The primary science goal of MMS is to reveal the small-scale, 3D structure and dynamics of the elusive electron diffusion region (EDR) believed to hold the key to the reconnection puzzle.

The unprecedented time resolution of the 3D electric field measurements made by the FIELDS suite [1,2] onboard the MMS spacecraft motivates a comprehensive study of the electric field signatures of magnetic reconnection and their implications for particle

energization. The three-axis electric field measurements from the spin-plane and axial double probes (SDP and ADP), combined with high time resolution (~1 millisecond) ambient electron flux from EDI, enable MMS to resolve electron-scale reconnection structures. Here, we present our first efforts to organize the initial MMS electric field measurements for comparison with previous observational and theoretical reconnection studies [e.g. 3,4,5,6].

NASA Earth and Space Science Fellowship (NESSF).

^[4] *Chen et al.* (2011), Phys. Plasmas, **18**,012904.