A PCA Approach to Estimating the Background for the GRAPE Balloon Experiment Sambid K. Wasti, Peter F. Bloser, Jason S. Legere, M. L. McConnell and James M. Ryan

Space Science Center, University of New Hampshire, Durham, NH, USA

Estimating the gamma ray background of a balloon borne experiment has always been a challenge. The background typically depends on many variables including altitude and payload orientation. Background may also depend on instrument parameters like temperatures. Estimating the background is significantly during the flight, which is often the case for a balloon borne experiment. Identifying the important parameters will facilitate the background analysis. The Gamma Ray Polarimeter Experiment (GRAPE), a balloon borne polarimeter for 50~300 keV gamma rays, successfully flew in 2011 and 2014. The main goal of these balloon flights was to measure the gamma ray polarization of the Crab Nebula. Analysis of data from the first two balloon flights of GRAPE has been challenging due to significant changes in the background level during each flight. We have developed a technique based on the Principle Component Analysis (PCA) to estimate the background for the Crab observation. We found that the background depended mostly on the atmospheric depth, pointing zenith angle and instrument temperatures. Incorporating Anti-coincidence shield data (which served as a surrogate for the background) was also found to improve the analysis. Here, we describe the analysis and present results from the 2014 balloon flight.

GRAPE	Figure 1: Plastic Scintillator Hamamatsu H8500 MAPMT	
The Gamma RAy Polarimeter Experiment (GRAPE) is a	Scintillators]
balloon borne Compton polarimeter optimized for 50-300	CsI(Tl) (Red) Plastics (Grey)	ן
keV gamma rays. GRAPE was flown initially in 2011. An		
improved version (improved shielding and larger detector	PC Events (Yellow)	(
arrays) was flown in 2014.	Schematic vs Fabricated Module.	(
The configuration flown in 2014 had 24 detector modules	Figure 2: Moune remperature	(
(Figure 1). Each module consists of 36 plastic and 28	Pressure Vessel	ľ
Cal(Tl) acientillator algunanta magnetad an a multi anada		

Principle Component Analysis

PCA uses a linear combination of the input parameters to define a new set of parameters called principle components. Each of the principle components is associated with an eigenvalue of the correlation matrix of the input parameters. These eigenvalues define the variation present in the data. The relative magnitude of the eigenvalue is a measure of how much that principle component contributes to a description of the data. Principle components associated with smaller eigenvalues contribute very little to an accurate description of the data. In this way, one can select a limited number of principle components (that is typically less than the number of input

USI(11) Scintillator elements mounted on a multi-anode photo-multiplier tube (MAPMT). PC events are defined as events that interact in one plastic element and one CsI(Tl) element. Ideally, these are events in which a photon scatters from the plastic to the CsI(Tl). These are the events that carry with them the signature of polarization. The module array is completely enclosed by both active shielding (plastic scintillator) and passive lead shielding (Figure 2). Lead collimators are used to define a 20° FoV. This instrument assembly is inside a pressure vessel that is maintained at 1 atm pressure and can be moved in elevation. An inertia wheel assembly is used to point the entire gondola in azimuth.

2014 Flight Data

The GRAPE payload was launched on September 26th, 2014 from Fort Sumner, New Mexico. During the flight, <u>Figure 4:</u> GRAPE observed the Sun, Cygnus X-1 and the Crab, along with two background regions in the sky that we refer to as BGD2 and BGD4. The background regions were regions in the sky that did not have known sources above our sensitivity threshold. During the flight, the Sun was not active and Cygnus X-1 was at a low intensity state (as determined from Fermi-GBM data). So these data could also be used for estimating the background during the Crab observation (our primary scientific target). The payload spent 14.4 hours at float. The Crab was observed for only 1.8 hours. Our flight plan had included 8 hours of data on the Crab, but the flight was terminated before all of the data could be collected. The variation of PC rate with time for various observations is shown in Figure 4. Estimating the background for the Crab observation is a challenging task. The background is influenced by various instrumental parameters like atmospheric depth, pointing zenith angle, temperatures, etc. The counting rates of the active anti-coincidence (AC) shield panels provide a measure of the charged flux, which is also linked to the $\overline{\overline{a}}$ instrumental background. We have addressed the ច្ច័ទ្ធ problem of background estimation using Principle Component Analysis (PCA). رى) (°C) In Figure 5 we show some of the instrumental housekeeping parameters that could be related to the instrumental background. The zenith angle is the angle between zenith and the pointed elevation. The average module temperature is the average of the temperatures associated with the module electronics. The scintillator air temperature is the temperature of the air near the scintillator elements. The total AC rates are the summed rate of each of the individual AC panels. Parameters such as these have been used as input to the PCA algorithm. The goal of the PCA is to estimate the instrument al background rate (for PC events) in terms of the various housekeeping parameters.

PC rate vs time for various Tot Energy = $80 \sim 200 \text{ keV}$ Pla Energy = 6 \sim 200 keV observations during the flight Cal Energy = $30 \sim 400 \text{ keV}$ 20.00 19.00 **5** 18.00

parameters) to provide a sufficiently precise description of the data. We choose 99% variation to define the number of significant principle components. The first 7 principle components covers 99% of the variation. We fit the data as a linear combination of these 7 principle components (new set of parameters) and use this model to predict the background level during the observation of interest.

Principle Component	1	2	3	4	5	6	7	•••
Eigen Value	8.046	3.844	1.329	0.488	0.083	0.059	0.050	•••
Cumulative Variation (%)	57.5	84.9	94.4	97.9	98.5	98.9	99.3	•••

<u>Figure 6:</u>

To verify the PCA approach, we first used data from observations of the Sun, BGD2 and Cygnus X-1 to estimate the background counting rate for BGD4 data. The difference between the measured counting rate and estimated counting rate for BGD4 is $(0.27 \pm$ 0.58) c/s. This result validates the use of PCA for estimating the background counting rate.

Figure 7:

Tot Energy = 80 ~200 keV Measured PC rate and estimated Pla Energy = 6 ~200 keV background for Crab observation Cal Energy = 30 ~400 keV

Summary

Using the estimated source and background counting rates for $MDP_{99} = rac{4.29}{\mu_{100}C_S} \sqrt{C_S + C_B}$ the Crab observation, we can determine the corresponding minimum detectable polarization (MDP). The 99% confidence level MDP (a measure of the polarization sensitivity) is given by Minimum Detectable Polarization. the equation shown on right. For the limited 1.8 hour Crab $|_{\text{Here, Cs}}$ is the source counts, C_B is observation (all of which was at large zenith angles), the MDP the background counts and μ is the for the integrated Crab flux (integrated over all pulse phases) is modulation factor of the instrument for a 100% polarized source 79%. If we consider only the off-pulse phase period of the (typically obtained via simulations). pulsar, we get an MDP > 100%, indicating that there was

Next we extended the analysis to estimate the background counting rate for the Crab observation using data from the Sun, Cygnus X-1 and the two background regions. The difference between the measured counting rate and estimated background counting rate is (5.06 ± 0.58) c/s. This represents clear evidence for a signal from

the Crab.

40.00 20.00 0.00 140.00 130.00 120.00 110.00 510000 530000 550000 490000 Time (s)

insufficient data collected during this flight to make a meaningful polarization measurement.

Had we measured the Crab for a full transit, our polarization sensitivity levels would likely have been sufficient to measure a polarization at the level reported by Dean et al. (2008)^[2].

[1] Weisskopf, M. C., Elsner, R. F., Hanna, D., Kaspi, V. M., O'Dell, S. L. et al. The Prospects for X-ray Polarimetry and its Potential use for Understanding Neutron Stars. In Neutron Stars and Pulsars: About 40 Years After the Discovery: 363rd Heraeus *Seminar*, 2006.

[2] Dean, A. J., Clark, D. J., Stephen, J. B., McBride, V. A., Bassani, L. et al. Polarized Gamma-Ray Emission from the Crab. *Science*, 2008.

For more information, please contact Sambid Wasti: <u>Sambid.Wasti@gmail.com</u>