Interplanetary Coronal Mass Ejections from MESSENGER Orbital Observations at Mercury
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1. Summary

* Used observations from MESSENGER in orbit
around Mercury to study interplanetary coronal
mass ejections (ICMEs) near 0.3 AU.

« Cataloged over 60 ICMEs at Mercury between
2011 -2014.

* Investigated key ICME property changes from
Mercury to 1 AU.

ind:
 Good agreement with previous studies for
magnetic field strength dependence on dis-
tance, and evidence that ICME deceleration con-
tinues past the orbit of Mercury.

 This ICME database useful for multipoint
spacecraft studies of recent ICMEs, as well as for
model validation of ICME properties.

2.ICME Identification

« |CMEs identified using magnetic field measure-
ments only,due to lack of solar wind data with MES-
SENGER.

» Strict selection criteria:

a) interplanetary shock observed

b) shock followed by sheath and magnetic ejecta
c) event lasted for the duration of at least 1 MES-
SENGER orbit through Mercury’s magnetosphere
d) event caused a visible distortion of the magneto-
sphere

« Selection criteria biases towards fast ICMEs that
are shock-driving and ICMEs with magnetic cloud-
like characteristics.

» Also determined corresponding CME counter-
part at the Sun for each event.
Example ICME:
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3.ICME Properties at Mercury
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* ICME speed estimated from CME ejection time at the Sun, arrival time _

at Mercury,and Mercury’s heliocentric distance.-> This average speed is
likely a maximum speed of the ICME at MESSENGER.
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» Maximum ICME |B| observed is 310 nT.
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- Fastest transit time from Sun to Mercury was 6 hr,longest transit time 1

52 hr.
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» Fastest transit speed 2350 km/s, slowest transit speed 325 km/s. O 10 20 30 40 50 80
Shock transit time (hours)

» Large spread in transit times and speeds indicates that due to proximity
to Sun, MESSENGER observed a wide range of ICMEs, even ones that may
be too slow or small to be detected at 1 AU.
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4. Differences in ICME Properties Between Mercury
and 1 AU

Mean = 0. 223+O 01 8

OL_L_

ME radial size (

Mean = 0.0434+0.0036

» Used existing databases of ICMEs at 1 AU for the same time period.
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* ICME deceleration continues beyond the orbit of Mercury: Shock transit speed (km/s)

(1) Shallow speed decrease with distance,
(2) Average transit time from Sun to Mercury 20% faster than expected based on average transit times to 1 AU,
(3) Significantly shallower ICME transit time dependence on initial CME speed observed at 1 AU compared to predictions based on MESSENGER ICME
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* MESSENGER+STEREO data
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* ICME magnetic shock compression ratio higher at MESSENGER (1.97) than at STEREO (1.64). ICME deceleration may explain the lower mean shock
compression at 1 AU compared to that at Mercury.
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5.Example ICME: 12 July 2012 Event

* Observed by MESSENGER and ACE

* [[lustrates that this ICME database can be used for
both model validation and propagation studies of
events observed in conjunction.

« Some of the large-scale structure is retained in
propagation (B, stongly negative at both distances)

* Non-dimensional expansion rate of the cloud con-
firmed by two separate methods at Mercury and

ACE to be: - AV,D
6= Aryz ~ 0
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» Compare to model predictions of Hess & Zhang
[2014] for this event, which fit remote-sensing ob-
servation a posteriori to the semi-empirical drag
model of Vrsnak et al.[2013].

» Model does quite well at estimating sheath size
and arrival time at Mercury:
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— Shock drag model - Hess & Zhang (2014)
— Ejecta drag model - Hess & Zhang (2014) |
o MESSENGER shock transit time
* MESSENGER ejecta transit time g

— Drag model - Hess & Zhang (2014)
* MESSENGER standoff distance |
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