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Abstract 
Heat stress impacts humans and animals in significant 

ways.  In the summer of 2015, the India heat wave killed 
2500 people (Kopp et al., 2015, NYTimes).  In May of that 
heat wave, an estimated 17 million chickens were culled.  
Trends in global heat stress show distinct regional scale 
variations.  These variations are related to various local 
factors.  But, nonetheless, we show that heat stress is robustly 
and fundamentally tied to the global mean surface 
temperature.  Heat stress measures accounting for humidity 
are tied to maximum buoyancy of the atmosphere, and thus, 
quasi-equilibrium convection theory (Williams et al., 2009). 

In this study, we conducted Community Land Model 
version 4.5 simulations to calculate heat stress in future 
climate projections with Representative Concentration 
Pathway 8.5 greenhouse gas forcing (from CAM4).  We use 
the HumanIndexMod (Buzan et al., 2015) to map heat stress 
in livestock.

Methods 
• We take 30 year climatologies of 2005-2034 and 

2071-2100, and calculate percentiles analyze the 
distribution of heat stress events (Figure 1). 

• Next, we compare 2005-2034 to the 2071-2100 distribution 
to show relative changes in duration of heat stress events 
(Figure 2). 

• Finally, we normalize the heat stress changes by the global 
mean surface temperature change between time slices 
(Figure 3; see Eq. 1).

• ΔX is the change in heat stress metric. 
• yy is the distribution percentile. 
• ⟨ΔT⟩ is the globally averaged surface temperature change 

between time slices. 
• ΓXyy is the normalized heat stress metric, i.e. the slope 

parameter.

ΓXyy
=

∆Xyy

⟨∆T ⟩
(1)
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Conclusions 
• Substantial increases to THI heat waves magnitude by 

2100. 
• Heat wave duration increases by 18 days in high latitudes, 

and greater than 9 months at low latitudes, per year. 
• Most regional THI experience increases of 1.5 units/°C 

global mean surface temperature changes. 
• Coastal regional THI increases of 1-1.25 units/°C global 

mean surface temperature changes. 
• Pacific Northwest THI increases of 1.75-2 units/°C global 

mean surface temperature changes. 
• These results imply substantial infrastructure enhancements 

over the leading decades (Gates et al., 1991).
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Abstract
• Here we will characterize the maximal state of heat stress, by presenting results of high 
heat states within both future and paleoclimate simulations, thereby constraining the 
reliability of using past greenhouse states as analogues for future climate warming. To do 
this we implement a variety of heat stress metrics into the National Center for 
Atmospheric Research (NCAR) Community Earth System Model (CESM), and force our 
simulations with boundary conditions for Eocene, Miocene, and ‘end of century’ 
greenhouse states. With these results, we aim to answer the following questions: How do 
heat extremes change with changing boundary conditions? Does the distribution of high 
heat events vary spatially and temporally? How well do Earth system models capture 
past green house climates, and what implications does this have for future climate?

Methods
• We used the NCAR CESM CAM4 (Bitz et 
al., 2012) and CLM4 (Lawrence et al., 
2011).  The Eocene (labeled ‘Eocene’) and 
Miocene (labeled ‘Miocene’) used an ocean 
spin-up technique described in previous 
work (Huber and Caballero, 2011).  Modern 
simulations used year 2000 boundary 
conditions with different pCO2, 367 ppmv 
(labeled ‘Modern’), and 1120 ppmv (labeled 
'Modern 1120').  Simulations were run at 
2˚x2˚ finite resolution with a slab ocean 
model.  All simulations were run for ~50 
years, using the last 20 years for 
climatologies.
• The heat stress metrics were implemented 
into CLM4 PFT modules at 2m height 
above the surface.  Output was saved at 4x 
Daily to capture the full diurnal cycle.

Future Work
• Implement Wet Bulb Globe Temperature and radiant temperature of humans into 

CLM4.  Additionally, these heat metrics will be implemented into CAM5.
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Discussion
• Recent work has pointed out thermal dangers to humans in future greenhouse 

climatic states (Sherwood and Huber, 2010; Hyatt et. al., 2010; Fischer et. al. 
2012).

• One way to infer the effects of future greenhouse climates on mammals is to 
evaluate paleoclimate greenhouse states.  Bergmann and Allen's Rules have been 
proposed to explain the effects of temperature on mammals.  Recent work shows 
dramatic impacts of rapid climate change on mammals (Secord et. al., 2012).

• Our results show expansion of high heat stress zones in both paleoclimate and 
future climate scenarios to dangerous levels beyond the calibration of Heat Index 
(Fig. 2).
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What is Heat Stress?
• Heat stress is the measure of thermal load on humans (and 

animals).  For mammals, there are 
4 methods for dissipating heat:  
Convection, Conduction, Radiation, 
and Evaporation.  In hot climates, 
~75% of heat dissipation occurs 
through Evaporation.  For humans, 
a sustained change of 3˚C in core 
temperature in humans can be 

lethal (Simon, 1993), and mammals suffer from heat stroke at 
core temperatures above 42˚C, due to mitochondria failure.  
Note, heat dissipation may not always be in equilibrium.

Figure 1
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2. Background
2.1 What is Heat Stress
Heat stress occurs when the human body loses the ability  to internally regulate heat 
balance.  An increase of internal temperatures of ~3C can be lethal (Simon, 1993).  
Heat balance is modulated by many different mechanisms within the human/
environment system.  There are four different methods of heat transport at the exterior 
of a human body (Figure 1):  radiation, convection, conduction, and evaporation (Simon 
1993; Daniela 2004; Gaughan et al, 2009).  Heat is generated within the core body 
dependent on levels of activity; from a minimum at rest up  to ~8x the heat production 
due to strenuous activity from work.  As external temperatures increase, the primary 
method of removing excess heat is through evaporation, controlling ~75% of heat loss 
(Daniela 2004).  Future climate scenario show that when wet-bulb  temperatures (the 
lowest temperature the environment cools to from latent heat release from evaporation) 
reaches 35C, the human body can no longer use sweat to remove heat, and cannot 
survive without air conditioning (Sherwood and Huber, 2010).  
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Figure 1

Heat balance in the human body.  The red arrows represent a hot environment, with the flux of 

heat into humans.  The blue arrows are heat dissipation mechanisms and their relative 

contributions humans: Evaporation, Respiration, Convection, Conduction (conduction could add 

heat, and thus is purple), and Work.  The dissipation mechanisms are variable due to thermal 

inertia, and may not reach steady state (quantities may not equal 100%).
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Heat Stress Joint Distributions
• 99th Percentiles of all metrics were computed, and their joint occurrence of all 
other metrics are found.

• Cities and paleo data proxies sites were selected and their local area and time 
averaged joint distributions were computed.  

• Paleolocalities are rotated to their respected time in GPlates (Muller et. al., 2008).
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Abstract!
• The HumanIndexMod calculates 13 heat 

related metrics using meteorological 
inputs of temperature, pressure, and 
moisture. The heat stress metrics are 
commonly used metrics around the world.  
The module is implemented into the 
CLM4.5, which is a component model of 
CESM, and is maintained by NCAR. 
Instantaneous moisture-temperature 
covariance is calculated every model time 
step.  The heat stress metric changes 
show that many portions of the world 
switch from moderate levels for the top 3 
days of a year to severe heat stress for 
the top 3 days of a year.
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Methods 
!• We use CESM RCP8.5 (Taylor et al., 

2012) output to drive the Community 
Land Model 4.5 (Oleson et al., 2013) 
(CLM4.5). 

• We implemented the HumanIndexMod 
into CLM4.5 to calculate 13 different 
metrics; 4 moist thermodynamic variables 
and 9 heat stress metrics. 

• We used 1°x1° resolution, and years 
2005-2100, to output 4x daily and 
analyze the characteristics of the 
Simplified Wet Bulb Globe Temperature 
(sWBGT).

What is Heat Stress?!
• Heat stress is the measure of thermal 

load on humans (and animals).  For 
mammals, there are 4 methods for 
d i s s i p a t i n g h e a t :  C o n v e c t i o n , 
Conduction, Radiation, and Evaporation.  
In hot climates, ~75% of heat dissipation 
occurs through Evaporation.  For 
humans, a sustained change of 3˚C in 
core temperature in humans can be lethal 
(Simon, 1993).  Heat dissipation may not 
be in equilibrium.

2. Background
2.1 What is Heat Stress
Heat stress occurs when the human body loses the ability  to internally regulate heat 
balance.  An increase of internal temperatures of ~3C can be lethal (Simon, 1993).  
Heat balance is modulated by many different mechanisms within the human/
environment system.  There are four different methods of heat transport at the exterior 
of a human body (Figure 1):  radiation, convection, conduction, and evaporation (Simon 
1993; Daniela 2004; Gaughan et al, 2009).  Heat is generated within the core body 
dependent on levels of activity; from a minimum at rest up  to ~8x the heat production 
due to strenuous activity from work.  As external temperatures increase, the primary 
method of removing excess heat is through evaporation, controlling ~75% of heat loss 
(Daniela 2004).  Future climate scenario show that when wet-bulb  temperatures (the 
lowest temperature the environment cools to from latent heat release from evaporation) 
reaches 35C, the human body can no longer use sweat to remove heat, and cannot 
survive without air conditioning (Sherwood and Huber, 2010).  
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Figure 1

Heat balance in the human body.  The red arrows represent a hot environment, with the flux of 

heat into humans.  The blue arrows are heat dissipation mechanisms and their relative 

contributions humans: Evaporation, Respiration, Convection, Conduction (conduction could add 

heat, and thus is purple), and Work.  The dissipation mechanisms are variable due to thermal 

inertia, and may not reach steady state (quantities may not equal 100%).
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Future Work!
• Implementation of additional heat metrics 

(WBGT temperature of humans). 
• Dynamically downscale results for 

EPSCoR Ecosystems and Society Project.
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• 33 is a limit for labor capacity (Dunne et al., 2013).

• (d) What causes peak heat 
stress?  We calculate conditional 
regime maps.   

• All temperatures and humidities 
associated with heat events are 
compared to each other via their 
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• Results are metric dependent.
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Methods 
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2012) output to drive the Community 
Land Model 4.5 (Oleson et al., 2013) 
(CLM4.5). 

• We implemented the HumanIndexMod 
into CLM4.5 to calculate 13 different 
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and 9 heat stress metrics. 
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(Simon, 1993).  Heat dissipation may not 
be in equilibrium.
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Heat stress occurs when the human body loses the ability  to internally regulate heat 
balance.  An increase of internal temperatures of ~3C can be lethal (Simon, 1993).  
Heat balance is modulated by many different mechanisms within the human/
environment system.  There are four different methods of heat transport at the exterior 
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1993; Daniela 2004; Gaughan et al, 2009).  Heat is generated within the core body 
dependent on levels of activity; from a minimum at rest up  to ~8x the heat production 
due to strenuous activity from work.  As external temperatures increase, the primary 
method of removing excess heat is through evaporation, controlling ~75% of heat loss 
(Daniela 2004).  Future climate scenario show that when wet-bulb  temperatures (the 
lowest temperature the environment cools to from latent heat release from evaporation) 
reaches 35C, the human body can no longer use sweat to remove heat, and cannot 
survive without air conditioning (Sherwood and Huber, 2010).  
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occurs through Evaporation.  For 
humans, a sustained change of 3˚C in 
core temperature in humans can be lethal 
(Simon, 1993).  Heat dissipation may not 
be in equilibrium.

2. Background
2.1 What is Heat Stress
Heat stress occurs when the human body loses the ability  to internally regulate heat 
balance.  An increase of internal temperatures of ~3C can be lethal (Simon, 1993).  
Heat balance is modulated by many different mechanisms within the human/
environment system.  There are four different methods of heat transport at the exterior 
of a human body (Figure 1):  radiation, convection, conduction, and evaporation (Simon 
1993; Daniela 2004; Gaughan et al, 2009).  Heat is generated within the core body 
dependent on levels of activity; from a minimum at rest up  to ~8x the heat production 
due to strenuous activity from work.  As external temperatures increase, the primary 
method of removing excess heat is through evaporation, controlling ~75% of heat loss 
(Daniela 2004).  Future climate scenario show that when wet-bulb  temperatures (the 
lowest temperature the environment cools to from latent heat release from evaporation) 
reaches 35C, the human body can no longer use sweat to remove heat, and cannot 
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heat, and thus is purple), and Work.  The dissipation mechanisms are variable due to thermal 

inertia, and may not reach steady state (quantities may not equal 100%).
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Abstract!
• The HumanIndexMod calculates 13 heat 

related metrics using meteorological 
inputs of temperature, pressure, and 
moisture. The heat stress metrics are 
commonly used metrics around the world.  
The module is implemented into the 
CLM4.5, which is a component model of 
CESM, and is maintained by NCAR. 
Instantaneous moisture-temperature 
covariance is calculated every model time 
step.  The heat stress metric changes 
show that many portions of the world 
switch from moderate levels for the top 3 
days of a year to severe heat stress for 
the top 3 days of a year.

GC53A-0496

Methods 
!• We use CESM RCP8.5 (Taylor et al., 

2012) output to drive the Community 
Land Model 4.5 (Oleson et al., 2013) 
(CLM4.5). 

• We implemented the HumanIndexMod 
into CLM4.5 to calculate 13 different 
metrics; 4 moist thermodynamic variables 
and 9 heat stress metrics. 

• We used 1°x1° resolution, and years 
2005-2100, to output 4x daily and 
analyze the characteristics of the 
Simplified Wet Bulb Globe Temperature 
(sWBGT).

What is Heat Stress?!
• Heat stress is the measure of thermal 

load on humans (and animals).  For 
mammals, there are 4 methods for 
d i s s i p a t i n g h e a t :  C o n v e c t i o n , 
Conduction, Radiation, and Evaporation.  
In hot climates, ~75% of heat dissipation 
occurs through Evaporation.  For 
humans, a sustained change of 3˚C in 
core temperature in humans can be lethal 
(Simon, 1993).  Heat dissipation may not 
be in equilibrium.

2. Background
2.1 What is Heat Stress
Heat stress occurs when the human body loses the ability  to internally regulate heat 
balance.  An increase of internal temperatures of ~3C can be lethal (Simon, 1993).  
Heat balance is modulated by many different mechanisms within the human/
environment system.  There are four different methods of heat transport at the exterior 
of a human body (Figure 1):  radiation, convection, conduction, and evaporation (Simon 
1993; Daniela 2004; Gaughan et al, 2009).  Heat is generated within the core body 
dependent on levels of activity; from a minimum at rest up  to ~8x the heat production 
due to strenuous activity from work.  As external temperatures increase, the primary 
method of removing excess heat is through evaporation, controlling ~75% of heat loss 
(Daniela 2004).  Future climate scenario show that when wet-bulb  temperatures (the 
lowest temperature the environment cools to from latent heat release from evaporation) 
reaches 35C, the human body can no longer use sweat to remove heat, and cannot 
survive without air conditioning (Sherwood and Huber, 2010).  
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