

Motivation

- Active computer chips increase temperature.
- Smaller modern designs exacerbate this problem.
- This may allow Intellectual Property (IP) Pirates to collect data about design or programming because of temperature changes.

Background

- To increase speed, IC components get smaller and closer together.
- Stacked components decrease interpose distance.
- Stacked components do not get more efficient.
- An increase in energy lost per unit volume increases total heat output.

Isothermal plane (°C)

Heat flux (W/m²)

proximity • Component dissipation.

decreases heat

- Temperature increases deeper in the chip.

Andy Mitchell

Hillsboro-Deering High School, Hillsboro, NH

Project Objective

To render flexible thermal models of components in 3D Integrated Circuits (ICs) and use those models to determine whether thermal features are consistent enough to allow analysis of chip design.

Methods

 Sapatnekar's Finite Element Method of thermal analysis is the backbone of this model.

[k _c]=	+A	+B	+C	+D	+E	+F	+G	+H
	+ <i>B</i>	+ A	+ D	+C	+F	+ <u>E</u>	<mark>+</mark> H	+ G
	+C	+ D	+A	+ B	+G	+H	+ <i>E</i>	+F
	+D	+ <i>C</i>	+ <i>B</i>	+ A	+H	+G	+F	+E
	+ E	+F	<mark>+</mark> G	+ <i>H</i>	+A	+ <i>B</i>	+ <i>C</i>	+ D
	<mark>+</mark> F	+ E	+ H	+6	+ <u>B</u>	+ A	+ D	+C
	+G	+ H	+ E	+ <i>F</i>	+ C	+ D	+A	<mark>+</mark> B
	+ H	+G	+ F	+ E	+D	+C	+ <i>B</i>	+ A

_	C		-			
here A =	$\frac{K_{x}hd}{9w}$	$+\frac{K_ywd}{9h}$	$+\frac{K_2wh}{9d}, B$	$=-\frac{K_xhd}{9w}$	$\frac{K_y wd}{18h}$	$+\frac{K_2wh}{18d}$
C = -	Kxhd	Kywd	$\frac{K.wh}{2KL}$, D	$=\frac{K_xhd}{10}$	Kywd	K_wh
E -	K _x hd	Kywd	K.wh	$K_{x}hd$	9n Kywd	K_wh
E =	18w	18h	9d, F	18w	36h	18d
G = -	36w	- 36h	$-\frac{K_z w n}{36d}$, H	$=\frac{n_x}{36w}$	18h	$\frac{\Lambda_z wn}{18d}$

[k_]{t}={p} ← Input Power

Here w, h and d represent height width and depth of the circuit housing. The K values represent the thermal dissipation values around the chip.

• Cadence Virtuoso was used to create viable circuit diagrams for a 3D chip environment.

environment allows users to simulate This circuits complete with voltage, current and power loss.

Example of power input and output in a simulated circuit.

The loss in power input to output bleeds out of the circuit as heat.

Advisors: Qiaoyan Yu **Sponsors/ Partners:** National Science Foundation (Grant ENG-1132648)

Testing the Viability of 3D IC Thermal Side Channel Attack

time (s) :pwr (W) 0.000 120.0E-9 2.500E-12 1.126E-6 4.376E-12 7.371E-6 5.618E-12 19.93E-6 5.474E-12 31.54E-6 7.504E-12 42.30E-6 8.655E-12 42.11E-6 10.00E-12 19.11E-6	trix of power values from oso can be imported into a AB program.	In th ther com			
IO.29E-12 I2.68E-6 IO.76E-12 5.126E-6 II.20E-12 2.295E-6 II.90E-12 915.6E-9 I2.50E-12 652.7E-9 I3.21E-12 560.4E-9 I4.10E-12 527.4E-9 I5.44E-12 492.8E-9	 MATLAB is well suited to building functional relationships between matrices and arrays. 				
 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	The program can extract data from a .csv.				
33.79E-12 148.4E-9 43.93E-12 148.4E-9 54.19E-12 148.4E-9 104.7E-12 148.4E-9 185.8E-12 148.4E-9 347.9E-12 148.4E-9 572.2E-12 148.4E-9	plot individual temperature s or averages.	Two ther dissimila			
the p the p chang variat circuit	rogram also allows for ges in chip size as well as ion of material around the				
Example code showing the components of	<pre>while k<= length(pwrW) P1 = pwrW(k,1); A = (d*h*ktx)/(9*w) + (d*kty*w)/(9*h) + (h*ktz*w)/(9*d); B = - (d*h*ktx)/(9*w) + (d*kty*w)/(9*h) + (h*ktz*w)/(9*d); C = - (h*ktz*w)/(36*d) - (d*kty*w)/(18*h) - (d*h*ktx)/(18*w); D = (d*h*ktx)/(18*w) - (d*kty*w)/(9*h) + (h*ktz*w)/(18*d);</pre>	Bare wire Three W			
the matrix in array form.	<pre>E = (d*h*ktx)/(18*w) + (d*kty*w)/(18*h) - (h*ktz*w)/(9*d); F = - (d*kty*w)/(36*h) - (d*h*ktx)/(18*w) + (h*ktz*w)/(18*d); G = - (d*h*ktx)/(36*w) - (d*kty*w)/(36*h) - (h*ktz*w)/(36*d); H = (d*h*ktx)/(36*w) - (d*kty*w)/(18*h) - (h*ktz*w)/(18*d); K = [A, B, C, D, E, F, G, H; B, A, D, C, F, E, H, G; C, D, A, B, G, H, E, F</pre>	• A Ic			
MATLAB allows for	<pre>KI = inv(K); [P2, P3, P4, P5, P6, P7, P8] = deal(0); P = [P1; P2; P3; P4; P5; P6; P7; P8]; I = [T1; T2; T3; T4; T5; T6; T7; T8];</pre>	v t			

lieralive testing.

outT(k) = sum(T);k = k+1;

T = KI*P;

The model behaved as predicted. Increases in power led to increases in temperature gradient.

The example used thousands of power values.

- Temperature changes can be extreme, with a microwatt power change producing a 4° shift.
- The model allows for comparisons of circuit temperatures when the chip environment gets larger or smaller, or the materials around it change their thermal conductivity.

voltage of a hermocouple by 1 mV.

• This could simultaneously make the circuit less efficient as it increases thermal loading.

Conclusions

• With small modifications, it is possible that a simple thermocouple could determine not only when 1 particular component is activated, but when it is deactivated.

• The geometric increase in thermal output as circuits get smaller means that a millivolt difference may cause a measurable temperature change in a component.

References

Pulkit Jain, Pingqiang Zhou, Chris Kim, Sachin Sapatnekar "Thermal and Power Deliver Challenges in 3D ICs" Ch. 3 "Three Dimensional Integrated Circuit Design" 10.1007/978-1-4419-0784-4_3

T. Fukushima, T. Tenaka, M. Koyanagi "Thermal issues of 3D ICs

http://www.sematech.org/meetings/archives/3d/8334/pres/Fukushima.pdf

Walt Kester, James Bryant, Walt Jung "Temperature Sensors"

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.6432&rep=rep1&type=pdf