Contribution: Model-based policy improvement

- Often available baseline policy (e.g., deployed, a simple heuristic)
- Data-driven MDP models are imprecise
- ► Safe policy: Guarantee that the solution to the imprecise model is better than baseline policy
- ► We use robust MDPs and show why to minimize baseline regret
- Regret minimization improves on baseline policy with only few samples

General problem setting

- ▶ Discounted infinite horizon MDP: Compute π : states → actions
- ► Transition probability P is unknown, available limited samples of state-to-state transitions • Return for discount factor $\gamma \in [0, 1]$:

return(policy, model) =
$$\rho(\pi, P) = \mathbf{E}_{p_0} \left[\sum_{t=0}^{\infty} \gamma^t \text{ reward}_t \right]$$

Baseline policy π_B : best known solution

Method 1: Solve average model (standard approach)

1. Estimate an average transition model \overline{P} from samples:

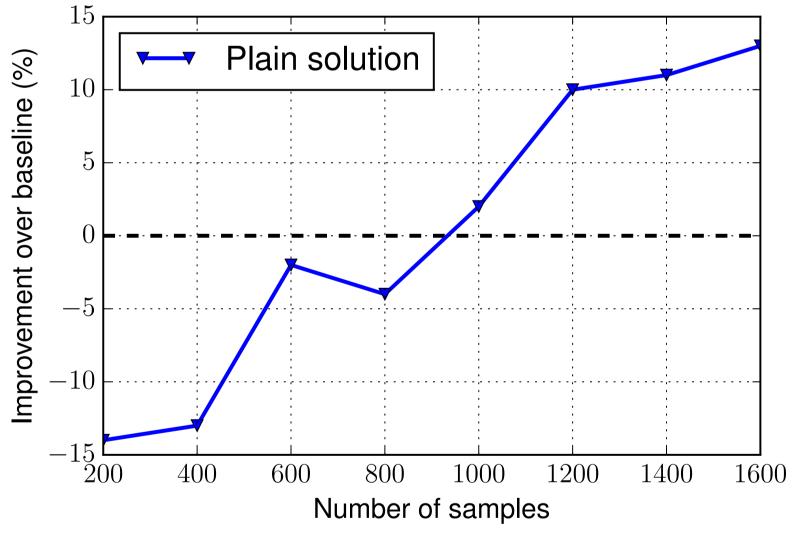
$$\mathbf{P}(s_1, a, s_2) = \frac{|\operatorname{samples_from}(s_1, a) \cap \operatorname{samples_to}(s_2)|}{|\operatorname{samples_from}(s_1, a)|}$$

2. Solve a regular MDP with average model P

 $\pi_{\mathsf{A}} \in \arg\max_{\pi} \operatorname{return}(\pi, P)$

Benchmark problem results

- Simulate samples from an assumed true model
- Evaluate with respect to true model



- Optimized policy is significantly worse than baseline policy with few samples (large uncertainty)
- Decreased performance is inapparent from the solution or average model alone

Method 2: Simple robust solution

Represent uncertainty due to limited samples:

$$\bar{P}(s_1, a, s_2) = \frac{|\operatorname{samples_from}(s_1, a) \cap \operatorname{samples_to}(s_2)|}{|\operatorname{samples_from}(s_1, a)|} \pm \sqrt{\frac{\operatorname{consta}}{|\operatorname{samples_from}(s_1, a)|}}$$

Construct set of plausible transition probabilities: (e.g. concentration inequalities)

$$\mathcal{P} = \left\{ P : \|\bar{P}(s, a, \cdot) - P(s, a, \cdot)\|_1 \le e(s, a) \right\} \quad e(s, a) \sim \sqrt{\frac{\operatorname{cons}}{|\operatorname{samples_f}|}}$$

Solve for a robust solution (lower bound):

$$\pi_{\mathsf{R}} \leftarrow \arg \max_{\pi} \min_{P \in \mathcal{P}} \operatorname{return}(\pi, P)$$

• Accept only if surely outperforms baseline policy $\pi_{\rm B}$:

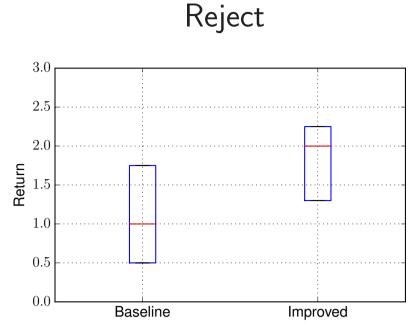
 $\min_{P \in \mathcal{P}} \operatorname{return}(\pi_{\mathsf{R}}, P) \ge \max_{P \in \mathcal{P}} \operatorname{return}(\pi_{\mathsf{B}}, P)$

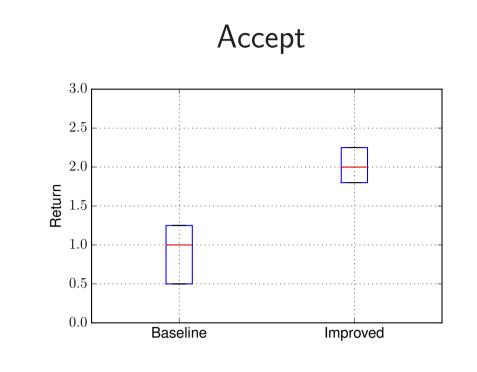
Safe Policy Improvement by Minimizing Robust Baseline Regret Marek Petrik, Mohammad Ghavamzadeh, Yinlam Chow

University of New Hampshire, Adobe Research, Stanford University

Accepting the robust solution

Accept the robust solution only if it is guaranteed to be better than the baseline policy Otherwise, use the baseline policy

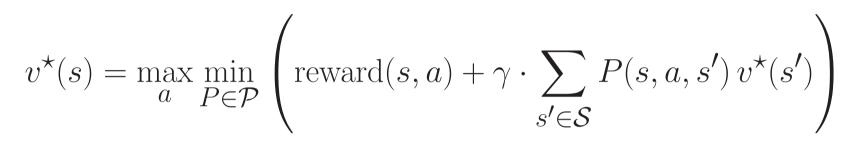




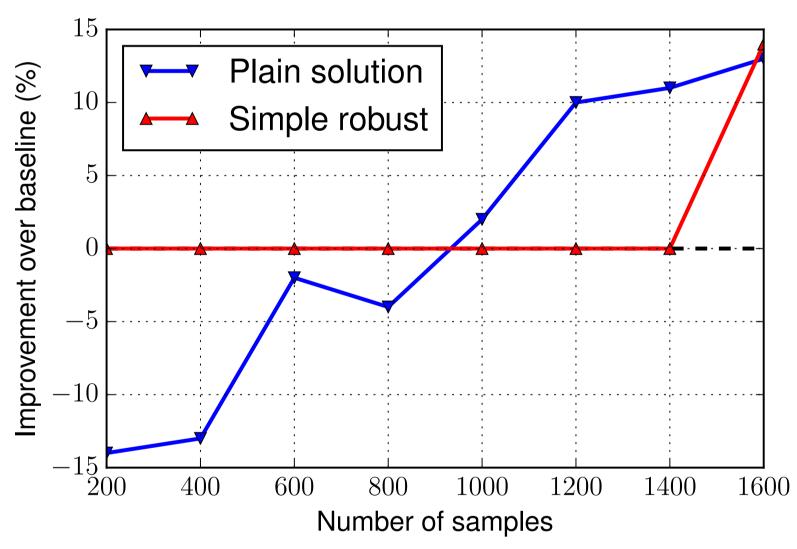
Solution using robust MDPs

- Problem (2) is non-convex: Tractably solve using robust Markov decision process (a game with nature)
- Rectangular uncertainty sets (independent uncertainty sets between states and actions)
- Similar properties as regular MDPs (Markov policies optimal), easy to solve
- Robust Bellman optimality:

(1)



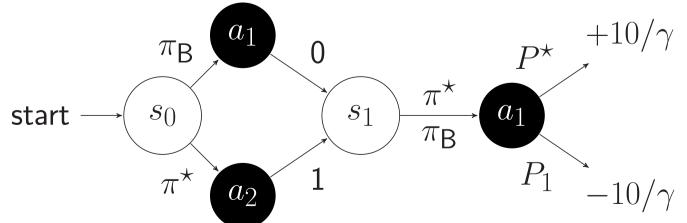
Benchmark problem results



- ► Guarantees solution is no worse than baseline
- All or nothing behavior even when some states are better known than others
- ► Can we better leverage the model to get improvement with few samples?

How to do better with a model

- State s_0 transition probabilities are certain
- \blacktriangleright State s_1 transition probabilities are uncertain



- ▶ Policy π^* always better than baseline π_B
- Method 2 does not improve on baseline in this example:

$$\min_{P \in \mathcal{P}} \operatorname{return}(\pi^*, P) = -9 \qquad \max_{P \in \mathcal{P}} P \in \mathcal{P}$$

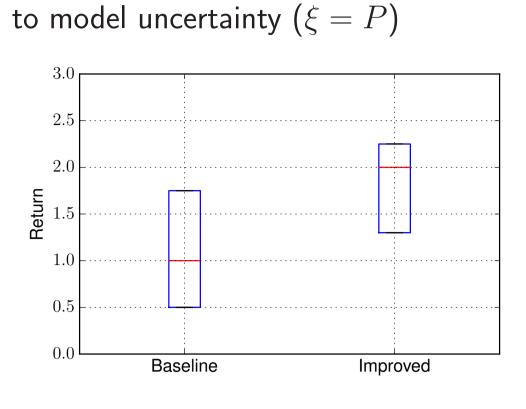
nts $\operatorname{om}(s_1, a)$

stants from (s_1, a)

(2)

$\underset{-\mathcal{P}}{\operatorname{ax return}}(\pi_{\mathsf{B}}, P) = +10$

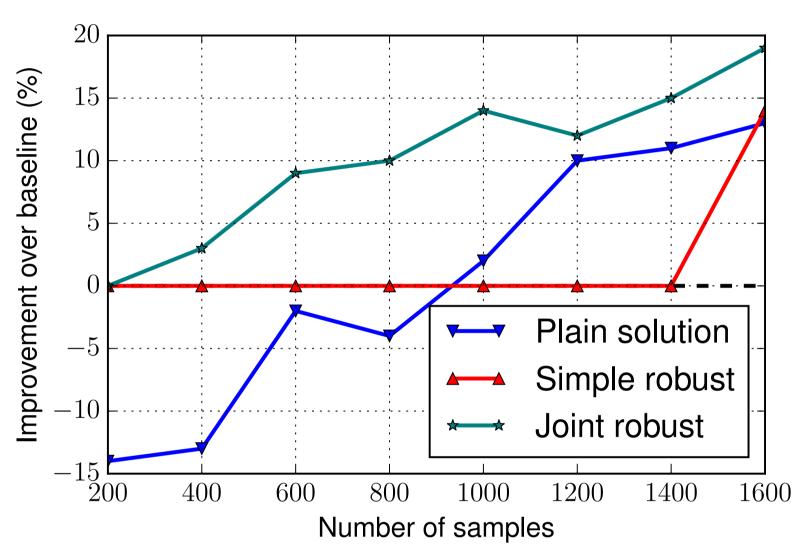
Method 3: Robust baseline regret (new approach)



Minimize robust baseline regret:

 $\pi_{\mathsf{S}} = \arg\max_{\pi} \min_{P \in \mathcal{P}} \left(\operatorname{return}(\pi, P) - \operatorname{return}(\pi_{\mathsf{B}}, P) \right)$ (3)

Benchmark problem results



Improves baseline solution with very few samples

Guarantees on performance loss

- Method 1: Solve average model: π_A

Method 2,3: Robust sol

$$\log(\pi_{\mathsf{A}}) \leq \frac{2\gamma}{(1-\gamma)^2} \max_{\pi} \left(\|r_{\pi}\|_{\infty} \|e_{\pi}\|_{\infty} \right).$$

Dution: π_{S}
$$\log(\pi_{\mathsf{S}}) \leq \min \left\{ \frac{2\gamma}{(1-\gamma)^2} \|r_{\pi^{\star}}\|_{\infty} \|e_{\pi^{\star}}\|_{1,u^{\star}}, \ \log(\pi_{\mathsf{B}}) \right\}$$

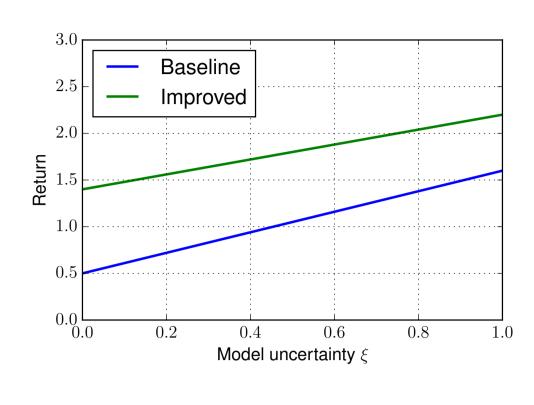
Other notable results (see the paper)

- 1. Showed that it is NP hard to solve (3) (via an SAT reduction)
- 2. Proposed a simple approximate algorithm for solving (3)
- 4. Case study using a realistic energy storage and arbitrage problem

Related work

- Most approaches based on model-free methods
- Off-policy learning and optimization (Perkins2002a; Thomas2015; Hallak2015)
- Robust/safe policy improvement (Pirotta2013)
- Conservative policy iteration (Kakade2002)
- Policy improvement with high confidence (Thomas2015a)
- Robust MDPs (Iyengar2005; Wiesemann2013)

► Be more precise about the impact of model uncertainty on both improved and baseline policies Considering confidence intervals alone is insufficient, must consider the response of return with respect



▶ Performance loss: $loss(\pi) = return(\pi^{\star}, P^{\star}) - return(\pi, P^{\star}); P^{\star}$ is the *true unknown* model

3. Optimal policy in (3) may be randomized; arbitrarily better than the best deterministic policy