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/ Motivation \

* Recent solar conditions include a prolonged solar minimum (2005-2009) and
the recent solar maximum not fully recovered in terms of the Heliospheric
Magnetic Field (HMF) strength compared to the previous maximum values.
These anomalies may indicate that we are entering an era of lower solar
activity.

Research objectives

* The past solar grand minima, especially the Maunder period (1645-1715) are
studied to gain further insight into grand minima.

* The time scale parameters associated with the three processes attributed to the
magnetic flux balance in the heliosphere are obtained using chi-square analysis.

* The existence of a floor in the heliospheric magnetic flux in the absence of the
Coronal Mass Ejections (CMEs) 1s investigated .

« HMF time series reconstructed based on geomagnetic data and near-Earth
spacecraft measurements (OMNI) data are used to find the fundamental
timescales that influence heliospheric field evolution.

* Using the predicted HMF from this work, we are going to deduce the
modulation potential of Galactic Cosmic Rays (GCRs) to obtain dose rates for
the coming solar cycle.

* We can use these results to predict the most conservative estimations of the
time to 3% risk of exposure-induced death (REID) 1n interplanetary space.

Background

Three processes responsible for transformation of CMEs:
* The top panel: conversion of

transient CME magnetic flux to
ambient heliospheric magnetic

Conversion

flux

* The middle panel: removal or
loss of the ambient heliospheric
field through magnetic
reconnection.

* The bottom CME magnetic flux
and ambient heliospheric
magnetic flux

Loss

Interchange
Reconnection

Time

The theory of Schwadron et al. [2010] describes the evolution of the heliospheric
magnetic flux including the closed flux from CMEs and the balance provided by

conversion, loss and interchange reconnection of magnetic flux.
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¢, 1s the transient CME associated magnetic flux, ¢, 1s the ambient heliospheric
magnetic flux, f 1s the frequency of CME ejections, D is the fraction of CME ejecta that
reconnects immediately, ¢,z 1s the flux of a typical CME. 7. , 7, and 7, are timescales
of conversion, loss, and interchange reconnection.
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Using chi-square analysis we found a relationship between CME rates and sunspot numbers:

f=0.019 £0.002 x (sunspot number) + 0.37 + 0.13

/ Results \

* We have employed the theory of Schwadron et al. [2010] to model the
generation of HMF back to 1610 using the new release of the sunspot group
number [Svalgaard and Schatten, 2016] .

* A chi-square analysis method 1s used to find the set of parameters (conversion,
loss, and 1nterchange reconnection timescales along with the floor flux) that

yields the closest agreement between the predicted HMF and reconstructed
geomagnetic-based HMF and OMNI data.

* An average value of 2.36 £ 0.08 nT has been added to the predicted mean
heliospheric field value 1n order to compensate for the role of the turbulent and
toroidal components of the HMF [Goelzer et al., 2013].

* The best-fit parameters are 7. = 3.07 + 0.03, 7, = 5.91 £ 0.06 years, t,. = 24.00
+ (). 18 days and zero for the floor flux.

 There 1s reasonable agreement between the model predicted HMF and
paleocosmic (!’Be) data despite an underestimation during Maunder period.
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* The possible sources of this discrepancy include (1) climate variability, the
production of energetic particles by solar events, and variability in '’Be-based
data; (2) the uncertainty of the sunspot numbers during the Maunder Minimum;
(3) variability in CME rate deduced from sunspot number; (4) the magnetic flux
excess attributed to inverted HMF.

Conclusions

* We apply a chi-square minimization technique to fit our simulated model to
geomagnetic-based data and OMNI data 1n order to find conversion, loss, and
interchange reconnection timescales along with a floor flux .

Using chi-square minimization we show there 1s no floor in the heliospheric
flux 1n the absence of CMEs.

* Our model results favorably reproduce paleocosmic data and show how the
heliospheric magnetic field may evolve through periods of extremely low
activity.

 The minimum value for the HMF at 1 AU 1n the model predicted historic
record 1s 3.1/3 + 0.40 nT.

e As the HMF continues to weaken over time, the GCR radiation can be a
worsening factor that limits space missions.
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