University of New Hampshire

CONTRIBUTIONS

- A Bayesian Multi Armed Bandit algorithm (ELSV) that utilizes value-function-driven technique in MDP/RL setup.
- Linearly-separable value functions based on UCB and Gittins index that consider expected return & the benefit of exploration to perform n-step lookahead.
- Sub-linear performance guarantee and strong simulation results for problems with structured priors.
- Simple and general, applicable in complex MAB problems.

PROBLEM FORMULATION

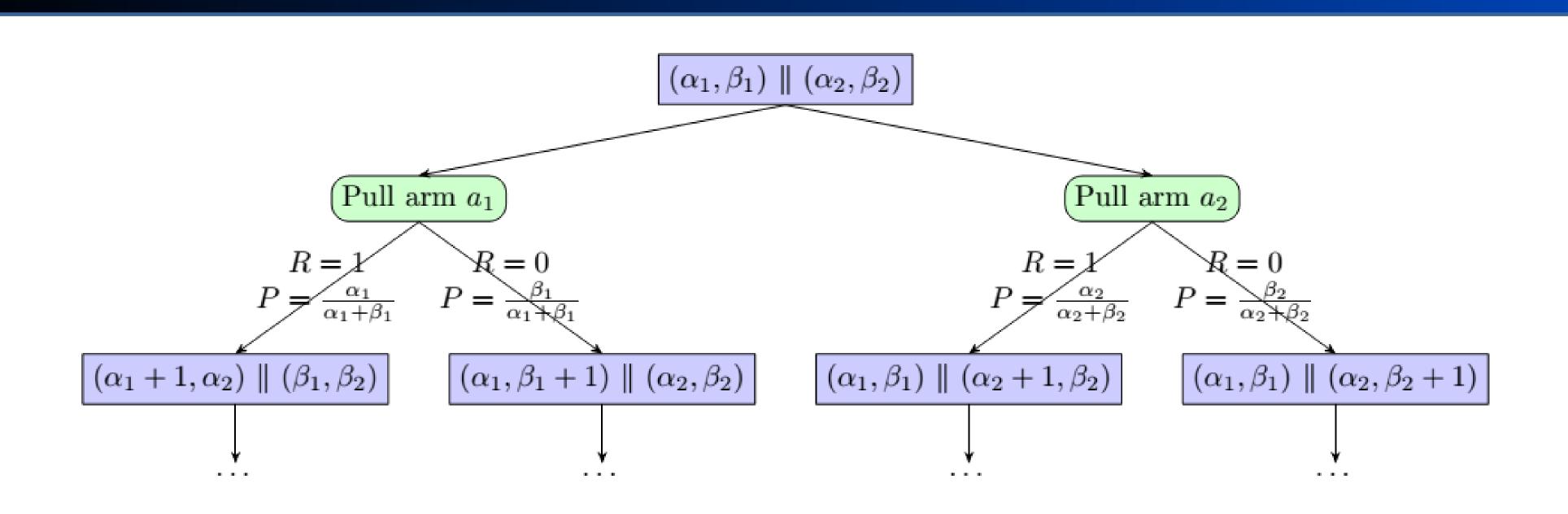


Figure 1: A single transition of the Bernoulli multi-armed bandit problem.

- Bayesian MAB problem is modeled as a Markov Decision Process (MDP).
- Any state $s \in S$ can be represented with Beta distribution $Beta(\alpha, \beta)$.

CONSTRAINED PROBLEM SETUP

- Optimize the level of *personalized* discount offers to customers in an e-commerce setting.
- Arm i + 1 represents a *smaller* discount than arm i: $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_N$.
- The rewards satisfy: $r_1 < r_2 < \ldots < r_N$.

VALUE DIRECTED EXPLORATION IN MULTI-ARMED BANDITS WITH STRUCTURED PRIORS

MAREK PETRIK BENCE CSERNA

INTRODUCTION

- Repeatedly choose one of N arms: A = $\{a_1, \ldots, a_N\}$ & receive a reward $R_i \in \{0, 1\}$.
- Rewards are distributed according to a *Bernoulli distribution* with a mean μ_a which is not known in advance.
- Use linearly-separable value functions that considers expected return & the benefit of exploration to perform n-step lookahead.
- Aim is to maximize cumulative reward & minimize Bayesian regret:

BayesRegret $(\pi, T) = \mathbb{E}_{\mu} [\operatorname{Regret}(T, \mu)]$.

- The actions \mathcal{A} in this MDP are pulls of arms of the bandit.
- The rewards received in transitions are 1 or 0 based on success or failure respectively.

INDEX POLICY

$$a^* \leftarrow \arg \max_{a \in \mathcal{A}} z_t(s_t^i, a_i)$$

• Index value z_t^{UCB} can be defined as:

$$z_t^{\text{UCB}}(s_t^i, a_i) = r(s_t^i, a_i) + \sqrt{\frac{\alpha \log t}{T_i(s_t^i)}}$$

Above figure shows regret of our Exploration via Linearly Separable Value Functions (ELSV) algorithm with 1-step lookahead, compared with other algorithms on the constrained bandit problem (discount levels of 20%, 10%, 0% for arms 1, 2, 3 respectively) with 3 arms and averaged over 5300 problem instances and with 95% confidence intervals.

REAZUL HASAN RUSSEL WHEELER RUML

APPROACH

• A linearly-separable value function for components $v_t^i : S_t^i \to \mathbb{R}$ s.t. $t \in \mathcal{T}$ & $s_t \in S_t$, holds

$$v_t(s_t) = \sum_{a \in \mathcal{A}} v_t^i(s_t^i)$$

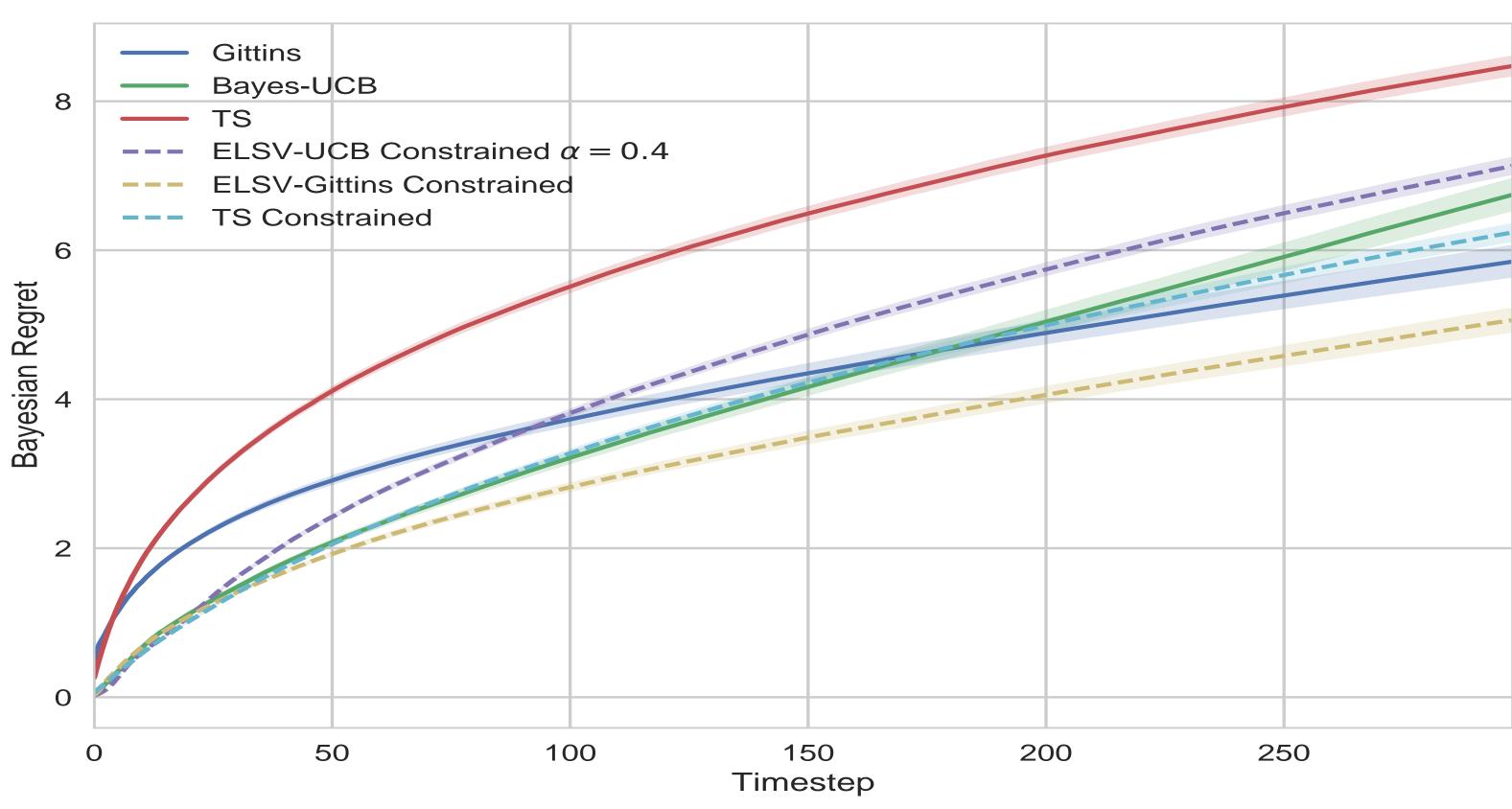
• With an arbitrary bandit index function z_t^i , corresponding exploration bonus function b_t^i , each component v_t^i must satisfy:

 $\mathbb{E}\left[v_{t+1}^{i}(S_{\tau+1}^{i})\right] - v_{t+1}^{i}(s_{\tau}^{i}) = b_{t}(s_{\tau}^{i}, a_{i}).$

• Compute linearly separable value functions:

 $\upsilon_t^i(\alpha,\beta) \leftarrow p \cdot \upsilon_t^i(\alpha+1,\beta) + q \cdot \upsilon_t^i(\alpha,\beta+1) - b_t(\alpha,\beta)$

RESULTS



FUTURE RESEARCH CONCLUSION • A new linearly separable value function that takes expected return & benefit of exploration into consideration is proposed. • Can be used in concert with MDP & RL.

• ELSV is a good first step in developing more sophisticated value-directed methods.

• We hope to further extend this approach to contextual bandits problems.