Problem

- Where do goals come from?
- How to decide which goal to pursue first?

Goal Reasoning

- Agent controls (H)arvester and (D)efender
- Harvester collects (F)ood
- +50 for Harvester at (B)ase with Food
- -10 if Harvester too close to (E)nemy
- Defender repells Enemy

Which goal first?

Goal A: Send Harvester to Food Goal B: Send Defender to obstruct Enemy

)	?	?	?
		?	?	?
F	1		?	?
E	3	?	?	?

• ? = unknown: Food, Enemy, obstacles

Which goal when some features are unknown?

Goal A: Send Harvester to Food Goal B: Send Defender to obstruct Enemy

> Can we do goal reasoning without a goal reasoner? With just planning?

University of Goal Reasoning as Multi-level Planning Workshop on Integrated Execution of Planning and Acting (IntEx)

Approach

We built a planner to solve problems in Harvester World

EV = 11.6 (a)(b)g = 11 g = 10 g = 14 $\sum_{i}^{N} g_i / N = 11.6$

Goal Reasoning using Optimization in Hindsight with Open Worlds

- Hindsight optimization reduces state space by sampling
- OH-wOW has been shown to do well in open worlds

GROH-wOW(current belief) 1. Sample For each action

- 2. Simulate
- 3. Plan in each sample
- Return expected max action

Belief state

D	?	?	?
?	?	?	?
Н	?	?	?
В	?	?	?

D		
F		
Н		
В	Ε	

Harvester World Benchmark

- Multi-unit --- (H)arvester (D)efender
- Adversarial --- (E)enemy
- Stochastic --- (F)ood can regrow
- Open world --- hidden obstacles
- Partially observable --- belief state
- Reward function --- implicitly encodes goals & action costs

GROH-wOW Planner

Sampled states

Our planner made similar decisions as in previous work without a goal reasoner

Example: Escort Scenario

Planning-Only Architectures for GR

Hypothesis: goals are generated by planners operating at a higher level of abstraction

Goals as Landmarks

- Stack of planners
- Top finds landmarks, subgoals
- Creates subproblems for next planner
- Fast because subproblem

Goals as Tunnels

- Stack of planners
- Top finds abstract plan
- Constrains state space for next planner
- Fast because smaller state space

Goals as Heuristics

- Top-level planner calls second planner
- Second estimates possible goals
- Estimate used as heuristic
- tunnels might not

Maybe planners can make decisions about goals too

Alison Paredes Wheeler Ruml

Results

• More flexible because consider plans that landmarks and