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When polar cap potential and reconnection rate don’t agree;
understanding viscous interaction and polar cap saturation

Joseph B. Jensen, Joachim Raeder, Kristofor Maynard, W. Douglas Cramer

University of New Hampshire, Space Science Center, Durham NH

®

University of
New Hampshire

The Hesse-Forbes-Birn Method

Using the Openggcm-CTIM-RCM
model we investigate the March 17,
2013 storm. OpenGGCM is a global
MHD code that we have coupled with
the Rice Convection Model that does
flux transport of the inner
magnetosphere. We have also coupled
it with the Coupled-Thermosphere-
lonosphere-Model that simulates the
polar ionosphere thermosphere system.

We run the simulation 4 times and the
only thing that is modified is the electron
0 © precipitation into the ionosphere. We

use a scaling factor o to multiply the

O max oo energy flux into the ionosphere. We use
e, values of  =.01, .1, 1, and 10. The

energy flux and Pedersen conductivity
B = are graphed in figure 1 showing the
different enhancements.
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Figure 1: Shows the total energy flux of the incoming electrons on the left

panels and the Pedersen conductivity on the right panels for the NH on
March 17, 2013, 9:00. From top to bottom a = .01, .1, 1, and 10.
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Figure 3: Shows the merging electric field compared with the CPCP for various
conductivities. This figure is taken from Nagatsuma [2004] their Figure 4.

angle dependence of CPCP from
Nagatsuma [2004].

Figure 5: A graph of the pedersen conductivity dependence
of viscous potential. Taken from Bruntz et al [2012]

We calculate the reconnection rate
using the method (HFB) outlined by Hesse
et al [2005]. This requires tracing all the
field lines in a magnetic domain that could
possibly intersect a reconnection region
and integrating the parallel electric field
along that line.

R = _Emax — INnax fa,ﬁ E” ds

The HFB method is a useful because a0 0piE o or  nogs

magnetic topology does not have to be
found. That is helpful for real solar wind
conditions when separators are difficult to
locate. In a simple constant solar wind
simulation the HFB method agreed with
traditional methods to within 12%.

Viscous Interaction

Figure 2: Shows a subset of the traced dayside magnetic field
lines in a test simulation to determine the accuracy of the HFB
method. E parallel is in color along the magnetic field line and the
red line is the separator. Earth is shown for scale.

Viscous interaction is a process where
solar wind drags magnetosphere plasma
just inside the plasma sheath. This then
causes a return flow in the tail as shown
in Figure 4. All of these flows of plasma
are mapped along field lines into the
lonosphere. This usually contains a
portion of the CPCP on the order of
10-20 kV, but during extreme events can
be up to 50-60.

Viscous Potential vs. Pedersen Conductance

- Figure 4: A cartoon of the convective flow of viscous interaction, sun

is to the left and solar wind flow cause the plasma just inside the
a5 | | magnetosphere to circulate. This figure taken from Stern [1989].
| 1 ‘ Bruntz et al [2012] did simulations with
$ P | another MHD model, LFM, looking at the
: o7 | conductivity dependence of viscous interaction
g2 | for normal solar wind conditions and found
o | that as ionospheric conductivity increases the
) \\\, | effect of the viscous interaction decrease, as
o . shownin Figure 5. When the solar wind
Pedersen Conductance [mhos] conditions are stronger the viscous potential

Increases.

OpenGGCM-CTIM-RCM Results of CPCP and R

Figure 6 shows the results of our four simulations during the storm period of March 17, 2013. The CPCP and R
are graphed for both hemispheres and for each scaling factor alpha and averaged over the whole simulation. Figure
/ shows the time evolution of the CPCP and R for both hemispheres. There are a few trends immediately evident.
The CPCP decreases with increasing precipitation. This occurs for both hemispheres and it is fairly symmetric. The
R NH appears to have a solid decrease (19%) in the reconnection rate as the precipitation is increased, but the
relationship is not as clear in the R SH, when looking at the average global reconnection the total range changes

only over 6%. This relation would require further testing to show its validity.

The other trend that is evident is that CPCP and R do not always agree. For lower precipitation cases the CPCP
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Is higher than the R, while for higher precipitation CPCP is lower.There are probably two effects going on here. _ E 2;;1”
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wo the polar cap is saturated at a lower potential than

| the reconnection potential.

Thus we find that CPCP is higher than R for low
R SH R global

lonospheric conductivity and CPCP is lower than R
for high ionospheric conductivity.
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Figure 7: Shows the time evolution of our four simulations with scaling factors of
precipitation, alpha. CPCP for NH and SH are the top two panels, and R for NH and SN
are graphed in the bottom two panels. The CME hit at 6:00 UT march 17, 2013.



