Shocks Driven by Slow CMEs: Importance of Radial Expansion Noé Lugaz¹, Charles J. Farrugia¹, Reka M. Winslow¹, Colin R. Small¹ and Neel P. Savani² ¹Space Science Center and Department of Physics – University of New Hampshire ²University of Maryland Baltimore County and NASA/GSFC submitted to ApJ last week

Slow CMEs That Drive Fast Forward Shocks

Coronal mass ejections (CMEs) may disturb the solar wind either by overtaking it, or by expanding into it, or both. CMEs whose front moves faster in the solar wind frame than the fast magnetosonic speed, drive shocks. In general, near 1 AU, CMEs with speed greater than about 500 km s⁻¹ drive shocks, whereas slower CMEs do not. However, CMEs as slow as 350 km s⁻¹ may sometimes, although rarely, drive shocks. We study these slow CMEs with shocks and investigate the importance of CME radial expansion in contributing to their ability to drive shocks and in enhancing shock strength. We also investigate the proportion of all CMEs with speeds under 500 km s⁻¹ with and without shocks in solar cycles 23 and 24, depending on the CME speed.

3+1 Examples

Four examples of a CME with an average speed under 370 km s⁻¹: three with a shock, and one without. For each CME, we calculated the average speed in the magnetic ejecta, the front speed taking into consideration expansion, the maximum speed and the shock speed. We calculate "Mach" numbers for each of these speeds, using the upstream solar wind and fast magnetosonic speeds. There are four categories of CMEs with shocks: $M_{cme} < 1 < M_{front}$ (expansion helps drive the shock), $M_{cme} < M_{front} < 1$ (expansion contributes), $1 < M_{cme} < M_{front}$ (expansion strengthens the shock) and complex cases with uneven speeds (often overtaken CMEs).

Slowest Sh
Using WIND data f
about half of them,
shock. Expansion s
"over-expanding" (

				1		1	1			_	1	1	1 1		1				1	1	1		
Event	Date	$t_{ m shock}$	Sheath Δt (h)	CME Start	CME End	$B_{\rm CMEmax}$ (nT)	$V_{\rm CME}~({\rm kms^{-1}})$	$\theta_{\rm Bn}$	Event	V_{exp}	$V_{ m sw}$	$V_{ m ms}$	$V_{\rm cme}$	$V_{ m front}$	$V_{ m max}$	$V_{ m shock}$	$M_{ m cme}$	$M_{ m front}$	$M_{ m max}$	$M_{ m shock}$	$V_{ m exp}/V_{ m cme}$	ξ	
Average Mach Less than 1 and Front Mach Greater than 1							1	32	275	45	320	350	350	325	0.99	1.65	1.65	1.8	0.10	0.92			
1	1998/08/19	18:40	11	08/20 06:00	08/21 20:00	16.5	320	51	2	42	320	57	345	400	400	415	0.35	1.2	1.2	2.1	0.12	1.26	22 Slowest Shock-Driving CMEs
2	2001/10/31	13:47	8.2	10/31 20:00	11/02 12:00	13	340	14	3	27	305	65	360	400	400	375	0.83	1.4	1.4	1.2	0.075	1.85	from 1006 to 0016 magnined by
3	2009/02/03	19:21	4.6	02/04 00:00	02/04 16:00	11.5	360	74		21	215	40	255	200	200	205	0.00	1.1	1.1	1.2	0.070	0.52	Jrom 1990 to 2010 measured by
4	2010/05/28	01:53	17.1	05/28 19:00	05/29 17:00	14.5	355	28	4	20	315	48	300	390	390	295	0.84	1.0	1.0	1.4	0.070	0.53	Wind.
5	2012/09/30	22:19	1.7	10/01 00:00	10/02 00:00	21.5	370	67	5	35	320	58	370	400	420	450	0.86	1.4	1.7	2.9	0.095	0.79	The examples about in the left side of the
Average Mach and Front Mach Less than 1							6	0	320	58	365	375	410	370	0.78	0.95	1.6	1.95	0	1.1	The examples shown in the left side of the		
6	1997/12/30	01:14	8.8	12/30 10:00	12/31 11:00	14	365	60	7	40	350	51	345	390	390	440	-0.10	0.78	0.78	2.2	0.12	0.72	poster are events #2. 9 and 15. CME
7	1998/03/04	11:03	1.8	03/04 13:00	03/06 09:00	12.5	345	35	8	20	350	50	360	370	400	415	-0.10	0.20	0.81	1.3	0.056	0.82	identification is from Dishandoon 9 Cana
8	2000/07/26	19:00	7	07/27 02:00	07/28 02:00	8	355	88	9	30	360	46	365	390	415	370	0.11	0.65	1.2	1.6	0.082	0.89	identification is from Richardson & Cane
9	2001/04/21	15:29	8.8	04/21 23:00	04/23 03:00	15	365	52	10	25	330	63	365	385	405	305	0.56	0.87	1.2	1.8	0.068	0.6	(2010). Shock identification and analysis
10	2011/03/29	15:10	9.1	03/29 23:00	03/31 04:00	14.5	365	77	10	20	075	00	075	105	400	090	0.50	0.01	1.2	1.0	0.000	1.00	· (DOL 1 ((W) 1 1 2 2 2)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							88		32	375	10	375	405	450	470	0	0.43	1.1	Z	0.085	1.08	is from <u>IPSnocks.fi</u> (Kilpua et al., 2015).	
Average Mach and Front Mach Greater than 1								12	20	285	41	335	360	360	335	1.2	1.8	1.8	1.4	0.060	0.80	The dimensionless expansion parameter	
12	1997/05/26	09:09	7	05/26 16:00	05/27 10:00	11	335	57	13	20	285	60	350	375	390	390	1.1	1.5	1.7	2.2	0.057	0.57	
13	1997/12/10	04:33	14.1	12/10 18:40	12/12 00:00	16	350	69	14	42	295	52	370	420	480	515	1.4	2.4	3.6	4.1	0.11	2.7	ξ , is calculated using the slope of the
	2002/03/18	13:14	17.2	03/19 05:00	03/20 16:00	21.5	370	39	15	30	290	45	350	370	380	390	1.3	1.8	2.0	2.2	0.086	0.78	velocity curve where the velocity is
15	2012/10/31	14:28	9.1			15.5	350	86	16	45	205	51	360	415	430	270	13	24	27	13	0.12	1.03	Delocity curve where the belocity is
16	2014/08/19	05:49	10.2	08/19 16:00	08/21 05:00	21	360	85	17	15	200		200	110	100	210	1.0	1.5	1.5	1.0	0.12	1.00	approximately linear.
17	2016/01/18	21:21	12.7	01/19 10:00	01/21 00:00	17	360	55	11	15	300	58	360	385	385	355	1.05	1.5	1.5	1.9	0.042	0.32	Shooles with $V_{1} \rightarrow V_{1}$, occur turically
No Clear Expansion								18	0	315	64	345	350	385	270	0.47	0.55	1.1	1.7	0	-	Shocks with v shock < v front occur typically	
18	1998/06/13	19:18	8.6	06/14 04:00	06/15 06:00		345	32	19	2	300	53	360	365	380	315	1.1	1.2	1.5	1.8	0.0056	-	because the shock is oblique.
19	2010/02/10	23:58	8.5	02/11 08:00	02/12 03:00	8.5	360	61	20	2	305	56	330	330	330	335	0.45	0.45	0.45	1.4	0.0060	-	
20	2012/01/21	04:02		01/21 06:00	01/22 08:00	12.5	330	81	21	-5	270	38	315	310	320	350	1.2	1.05	1.3	2.0	-0.016	-0.6	
	2012/09/30	10:15	3.8	09/30 14:00	09/30 20:00	8	315			_15	205	50	360	345	375	360	1 2	1	1.6		_0.042	_0.58	
22	2016/11/09	05:45	18.2	11/10 00:00	11/10 16:00	13	360	88		-10	290	00	500	040	010	300	1.0	T	1.0	1.4	-0.042	-0.00	

SC24 is weaker in terms of solar wind speed and IMF strength at 1 AU than previous cycles. This should affect the ability of slow CMEs to form a shock. We used OMNI 1-day data to determine the minimum speed, V_{min}, required to form a shock (sum of the solar wind and fast magnetosonic speeds). V_{min} is about 35 km s⁻¹ lower in SC24 than it was in SC23 (statistically significant) and this difference holds if we exclude the quietest periods when there was no CMEs. All other things equal, slow CMEs should be more likely to drive a shock in SC24 than SC23. Next, we determine the percentage of CMEs with shocks depending on the CME speed.

Period	$V_{ m sw}$	$V_{ m sw}$ V_a		C_{s2}	$V_{ m min}$	$_{11}$ $V_{\min 2}$	Speed	Total $\#$ of CMEs	05/1996 - 2007		2008- 11/2016		
	1	Modi	<u></u>					CME with shock	%	CME with shock	%		
			all				< 370	74	9/33	27%	11/41	279	
05/1996 - 2007	420	56.3	55.3	47.6	502	2 497	370-390	73	12/35	34%	12/38	329	
2008 - 01/2017	394	48.6	53.1	42.3	470	463	400-420	71	21/48	44%	12/23	529	
07/1007 01/200	6 426	61 7	55 9	48.0	519	507	430-450	83	24/57	42%	11/26	429	
07/1997 - 01/2000	0 420	420 01.7		40.9	012	. 507	460-500	72	24/46	52%	14/26	549	
10/2010 - 11/2010	6 399	51.7	53.5	43.3	477	471						_	
						Pere	centage of	^r Slow CM	Es 1	with Shoc	ks		
Period	# Days	$\# \text{ Days} V_{\min} < 350$		$V_{\min} < 400$		$V_{\min} < 450$	We used the average magnetic ejecta speeds						
07/1997 - 01/2006	3128	1	19			764	from Richardson and Cane (2010) and the						
10/2010 - 11/2016	2250	6	60			838	list	of shocks m	neasured by	J ÀC	CE and Win	d	

Median Solar Wind and Characteristics Speeds and Day when Shocks with Slow **Speeds May Form for the SC23 and 24** <u>Top</u>: Solar Wind (V_{sw}), Alfvén (V_a), ionacoustic (C_s) with two versions of the electron temperature (not part of OMNI) and minimum front speeds to form a shock ($V_{min} =$ $V_{sw} + \sqrt{(V_a^2 + C_s^2)}$. All speeds are in km s⁻¹. <u>Bottom</u>: Number of days with low V_{min}

Discussion and Conclusions

•~25% of the slowest CMEs from 1996 to 2016 drive a shock. If CME radial expansion did not contribute to the formation of theses shocks, one would expect this number to be smaller. Other potential explanations include: bias in detecting CMEs with shocks, and erosion of non-shock driving slow CMEs as compared to shock-driving CMEs. We estimate for the 22 slowest CMEs that expansion increases the Mach number by 0.44, on average, from 0.77 for the propagation Mach to 1.2 for the front Mach. Excluding complex events, there is a 0.58 increase from 0.73 to 1.32. This means that the expansion contributes about 40% to the front Mach number. • For these slow CMEs, slow solar wind speed, low fast magnetosonic speed and "large" expansion must occur for a shock to form. • There is no significant difference in the proportion of CMEs with shocks or without shocks depending on their speed in SC24 compared to SC23. However, a 490 km s⁻¹CME in SC24 should, on average, drive a shock, while it should not in SC23. • This lack of difference can be explained if the expansion speed of CMEs is less at 1 AU in SC24 than it was in SC23. A 450 km s⁻¹ would have, for example, a 520 km s⁻¹ front speed in SC23 but only 470 km s⁻¹ front speed in SC24. •Gopalswamy et al. (2014, 2015) reported that MCs in SC24 had an expansion speed of 25 km s⁻¹ vs. 51 km s⁻¹ in SC23. If this holds for all CMEs, rather than only MCs, this could explain the lack of change in the ability of slow CMEs to drive shocks.

ock-Driving CMEs

rom 1996 to 2016, we found 22 CME events with average speed less or equal to 375 km s⁻¹ that drove a shock. For the propagation Mach number is less than 1, but the addition of expansion contributes to the formation of the peed and dimensionless parameter (Démoulin et al., 2008) were varied around their typical values, with a few 6) CMEs. Expansion always occurred sub-Alfvénically.

Solar Cycles 23 vs. 24

from Kilpua et al. (2015). The percentage of slow CMEs driving a shock is almost the same for SC23 and SC24, indicating that another effect must balance the lower V_{min} in SC24. Note that SC24 had more of the slowest CMEs (< 370 km s⁻¹) but fewer of the slightly faster ones $(400-500 \text{ km s}^{-1})$.

