
Fast Kinodynamic Motion Planning
Scott Kiesel, Tianyi Gu, Wheeler Ruml

(presented at IROS 2017)

Problem Setup

•Given: environment, start state, goal region, vehicle dynamics

•Find: dynamically-feasible continuous trajectory (sequence of
piece-wise constant controls) as quickly as possible!

Previous Work: RRT & P-PRM

RRT (LaValle & Kuffner 2001)

•Generate a (random) sample
state

•Select nearest state in the
existing motion tree

•Steer toward the sample,
generating new state (or use a
random control if no steering)

•Repeatedly grow the motion
tree until it touchs the goal
region

P-PRM (Le & Plaku 2014)

•Find a shortest path in an
abstract graph from the start
vertex to the goal vetex

•Use heuristic cost-to-go
information to guide growth of
the motion tree

BEAST: Bayesian Effort-Aided Search Trees

How to estimate effort?

Minimize planning effort
≈ Minimize # of total state propagation attempts

Local Effort Estimates:

Maintain a beta Distribution for each edge:
Current belief regarding success rate along an edge

E[X ] = success

success + failure

Edge weight in abstract graph
= expected # of propagation for one success attempt
=E[X ]−1

Global Effort Estimates:

•Given local effort estimates, we want estimate total effort to
reach the goal.

•Accumulate local effort estimate along the shortest paths from
each abstract state to the goal.

•Guide motion tree growth toward easy way

Experiments

Forest with Quadrotor:

Left: P-PRM generates samples (green dots) along low-cost ab-
stract path but it is challenging to grow the motion tree (red lines).
Right: BEAST has quickly learned that it is difficult to propagate
the motion tree downward and has reached the goal faster.

3-ladder with Dynamic car & Hovercraft:
DynamicCar_3-ladder.dae

BEAST P-PRM KPIECE RRT

C
P

U
 T

im
e

80

160

240

Hovercraft_3-ladder.dae

BEAST KPIECE P-PRM RRT

C
P

U
 T

im
e

80

160

240

BEAST find complex path much faster than P-PRM, KPIECE, and
RRT and is also much robust.

This table gives 95% confidence intervals on the median slowdown
of the other planners relative to BEAST. A value of 1.9 means that
the algorithm took 1.9 times as long as BEAST to find a solution.
The gray cells are those case in which a planner did not find a
solution within 300 seconds.


