

Problem Setup

- Given: environment, start state, goal region, vehicle dynamics
- Find: dynamically-feasible continuous trajectory (sequence of piece-wise constant controls) as quickly as possible!

Previous Work: RRT & P-PRM

RRT (LaValle & Kuffner 2001)

- Generate a (random) sample state
- Select nearest state in the existing motion tree
- Steer toward the sample, generating new state (or use a random control if no steering)
- Repeatedly grow the motion tree until it touchs the goal region

• Find a shortest path in an abstract graph from the start vertex to the goal vetex

• Use heuristic cost-to-go information to guide growth of the motion tree

Fast Kinodynamic Motion Planning Scott Kiesel, Tianyi Gu, Wheeler Ruml (presented at IROS 2017)

BEAST: Bayesian Effort-Aided Search Trees

How to estimate effort?

Minimize planning effort \approx Minimize # of total state propagation attempts

Local Effort Estimates:

Maintain a beta Distribution for each edge: Current belief regarding success rate along an edge

> success $E[X] = \frac{1}{success + failure}$

Edge weight in abstract graph = expected # of propagation for one success attempt

 $=E[X]^{-}$

Global Effort Estimates:

- Given local effort estimates, we want estimate total effort to reach the goal.
- Accumulate local effort estimate along the shortest paths from each abstract state to the goal.
- Guide motion tree growth toward easy way

Left: P-PRM generates samples (green dots) along low-cost abstract path but it is challenging to grow the motion tree (red lines). **Right**: BEAST has quickly learned that it is difficult to propagate the motion tree downward and has reached the goal faster.

3-ladder with Dynamic car & Hovercraft:

RRT and is also much robust.

map	vehicle	P-PRM	KPIECE	RRT
open area	car	1.1–1.9	18–35	3.2–5.8
	hover.	0.7–1.1	3.2-6.9	5.9–10
single wall	car	4.9–6.3	6.2–9.1	6.2-8.1
	hover.	9.2–11	2.1 - 3.7	11–13
3 ladder	car	2.9–3.4	2.4-4.6	5.0-6.3
	hover.	8.7–10	1.3 - 1.7	9.1–10
2D forest	car	1.1–1.6	100–131	21–38
	hover.	1.0–1.8	9.4–16	17–25
3D forest	quad.	1.0–1.3	0.5–0.8	7.1–10
	blimp	2.5–3.3	60–75	28–43
fifthelement	quad.	1.0–1.2	3.8–4.9	4.6–6.1
	blimp	1.2–1.7	32–44	5.1-21

This table gives 95% confidence intervals on the median slowdown of the other planners relative to BEAST. A value of 1.9 means that the algorithm took 1.9 times as long as BEAST to find a solution. The gray cells are those case in which a planner did not find a solution within 300 seconds.

Experiments

BEAST find complex path much faster than P-PRM, KPIECE, and