

## A.J. Rogers<sup>1</sup>, C.J. Farrugia<sup>1</sup>, R.B. Torbert<sup>1</sup>, M.R. Argall<sup>1</sup>, R.J. Strangeway<sup>2</sup>, R.E. Ergun<sup>3</sup>, A.S. Ardakani<sup>1</sup> $^{1}$ The University of New Hampshire, Department of Physics, Durham, NH; $^{2}$ University of Colorado, Laboratory for Atmospheric and Space Physics, Boulder, CO December 11, 2017

### Abstract

We present analysis of two Ion Diffusion Regions (IDRs) in the geomagnetic tail, as observed by the Magnetospheric Multiscale Mission (MMS). Analysis of each event is centered around discussion of parameters commonly associated with IDRs such as enhanced electric field magnitude, guiding center expansion parameter, and ion velocity. Characteristic values for these parameters are determined, as well as other common attributes of IDRs, and used to develop a searching algorithm to automate identification of possible IDRs for closer inspection. Preliminary results of applying this algorithm to *in situ* MMS observations are also presented

## Methodology

The search for Ion Diffusion Regions is taken in three stages. The first stage looks for correlated reversals in  $B_N$  and ion  $V_L$ , taken to mean occurring  $\leq 3$ minutes apart. The second stage looks for  $|E| \ge 10mV$  and a guiding center expansion parameter  $\delta_i \geq 1.0$ , both coinciding with the reversal in  $B_N$ . The third stage looks for Hall  $\vec{E}$  and  $\vec{B}$  in the neighborhood of the reversal in  $B_N$ , again taken to be within 3 minutes. To maintain consistency with previous studies, GSM coordinates have been used throughout this study.

### References

— Muzamil, F. (2017) "A Study of Reconnection Poleward of Cusp: Cluster and Polar". PhD Thesis. UNH Physics. Durham, NH

– Scudder, J.D., R.D. Holdaway, R. Glassberg, S.L. Rodriguez. (2008) 'Electron diffusion region and thermal demagnetization". JGR. 113. A10208 — Alexandrova, A., R. Nakamura, V.S. Semenov, T.K.M. Nakamura (2015) "Motion of reconnection region in the Earths magnetotail". Geophys. Res. *Lett.* 42. 46854693.

## Selection Rules

| Stage 1                    |        |
|----------------------------|--------|
| $B_z(\text{GSM})$ Reversal |        |
| $V_x(\text{GSM})$ Reversal |        |
| Separation                 |        |
| Stage 2                    | At     |
| $ ec{E} $                  |        |
| $\delta_i$                 |        |
| Stage 3                    | Withir |
| Hall $\vec{E}_n$           | DC     |
| Hall $\vec{B}_m$           | $\geq$ |
|                            |        |
| Total Stage 1              |        |
| Total Stage 1+2            |        |
| Total Stage 1+2+3          |        |

IDR Search Criteria The above are the selection rules used to define the search algorithm bounds for identifying Ion Diffusion Region candidates. Included is the total number of events which satisfy these criteria during the period from May 01, 2017 to July 20, 2017.

## Identified IDRs $(201\overline{7-05-01} \rightarrow 2017-07-20)$

| yyyy-mm-dd/tttt UT | $B_z$               | $V_{z}$ |
|--------------------|---------------------|---------|
| 2017-06-17/2024    | $\pm 5nT$           | +150    |
| 2011 00 11/2024    | -3nT                | -150    |
| 2017-06-19/09/13   | $\frac{-3nT}{+4nT}$ | -550    |
| 2017-00-15/0545    |                     | +450    |
| 2017 07 03/0527    | +6nT                | +200    |
| 2017-07-03/0327    | -8nT                | -200    |
| 2017-07-06/1547    | -3nT                | -750    |
| 2017-07-00/1047    | +6nT                | +900    |
| 2017_07_11/223/    | -4nT                | -600    |
| 2017-07-11/2204    | +3nT                | +200    |
| 2017-07-17/0749    | $\frac{-7nT}{+6nT}$ | -750    |
|                    |                     | +450    |

Preliminary Results The table above shows the six Ion Diffusion Region encounters by MMS1 during the period beginning May 01, 2017 and ending July 20, 2017, as identified by the criteria outlined before.

# Observations of Ion Diffusion Regions in the Geomagnetic Tail



 $47s | 12 \frac{mV}{m} | 3.3 |$  $19s \ \left| \ 30 \frac{mV}{m} \right| \ 3.8$  $67\frac{mV}{m}$  $-12^{+-}$ 5s $35s \left| 20 \frac{mV}{m} \right| 2.5$  $|<1s|28\frac{mV}{m}|15.$  $7s \quad \left| 29 \frac{mV}{m} \right| 1.8$ 



2017-07-11/2234 UT - <u>Time Series</u>

## 2017-07-17/0749 UT - <u>Time Series</u>



Note: The July 17th event above represents a subset of identified IDRs Time Series Data: These time series data from MMS1 include HPCA  $H^+$  density as a for which calculation of the X-line velocity is difficult. In this case while proxy for overall ion density, FGM magnetic field data,  $HPCA H^+$  velocity as a a positive X-line velocity in  $GSM_x$  can be inferred on the basis of the proxy for overall ion velocity, EDP electric field data in the GSM  $\hat{z}$  direction as well correlation of  $B_z$  and  $V_{ion}$  reversals, it is not conclusive and a value for as  $|\vec{E}|$ , and the calculated guiding center expansion parameter. Vertical lines are the X-line velocity has not been included here. included to indicate  $B_z$  reversal. Hall  $\vec{E}$  are highlighted in the  $E_z$  plots. Dashed lines represent approximate correction for motion of the X-line in  $GSM_x$ .







Hall  $\vec{B}$  Analysis: The abscissa of each plot is the ion velocity which is used as a proxy for the  $\hat{L}$  direction, while the ordinate axis is  $B_x$  which is used as a proxy for the  $\hat{N}$  direction. Lines are provided at  $B_x = 0$  and at the estimated  $GSM_x$  velocity of the X-point. Colored circles represent Hall magnetic field  $(B_u)$  values, with positive values in blue, negative values in red, and magnitude proportional to the area of each circle. Dashed lines represent approximate correction for motion of the X-line in  $GSM_x$ .









## Conclusions

- Used a stepwise approach for IDR identification
- Identified 6 IDRs encountered by MMS1 between May 01 and July 20, 2017
- $\blacksquare B_m$  measurements in most of these show predicted quadrupole Hall  $\vec{B}$  in 3/4quadrants, as expected in quasi-symmetric tail reconnection
- Code to automate this process is in development

## Future Work

IDL code to automate application of the search algorithm is under development and can currently test for stages one and two. Our goal in developing this code is to automate the flagging of likely IDRs which include flow reversals for later analysis by a human to determine if Hall fields are present. While our algorithm does not, presently, provide flagging for IDR candidates without ion flow reversals, further development and refinements will be possible after the current iteration reaches production maturity.

## Acknowledgements

Thanks are owed to: John Marci, Ivan Dors, Christine Schultz, Love Alm, Hiroshi Matsui, Kristoff Paulson, Dominic Payne, Chris Mouikis, Terry Forbes, and Carolyn Laroche.

This work has been supported by NASA via contract 499878Q