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Despite decades of research progress, 
ecologists are still debating which pools 
and fluxes provide nitrogen (N) to plants and 
soil microbes across different ecosystems. 
Depolymerization of soil organic matter is 
recognized as the rate-limiting step in the 
production of bioavailable N; however, in 
many mineral soils, detrital polymers consti-
tute a minor fraction of total soil organic N. 
The majority of organic N is associated with 
clay-sized particles where physicochemi-
cal interactions may limit the accessibility 
of N-containing compounds found therein. 
Although mineral-associated organic matter 
(MAOM) is considered a critical reservoir 
of soil N, a growing body of research now 
points to the dynamic nature of mineral-
organic associations and their potential for 
destabilization. 
	 In a new conceptual framework, we 
propose that mineral-associated organic 
matter (MAOM) is an overlooked and 
important mediator of bioavailable N, 
especially in the rhizosphere. 

Direct pathway (via organic acids):

	 Organic acids interfere with metal-organic bonds and release
	 formerly mineral-protected compounds into the soil solution. 

Indirect pathway (via microbial community):

	 Microbes use root exudate C to grow and reproduce, which
	 stimulates an N-mining response. Activated microbes will 
	 target the N-rich and low-molecular weight compounds that 
	 dominate MAOM.

Abitioc control with sterile MAOM + sand 
to assess the direct effect of C additions 
on MAOM destabilization; measure metals 
released into solution. 

Evaluate the MAOM priming response 
across a range of soils that vary in 
mineralogical composition (e.g., kaolinitic 
vs. smectitic soils).

Introduction Results

Laboratory incubation of mineral-associated organic matter

Carbon substrates stimulate the degradation of MAOM-C

Carbon substrates stimulate C-acquiring, N-acquiring and oxidative enzyme activites

Gross N ammonification positively associated with priming of MAOM-C

Next steps
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While physicochemical interactions with clays 
protect MAOM from decomposition, we 
argue that several biochemical strategies 
enable plants and microbes to disrupt 
mineral-organic interactions and effectively a
ccess MAOM. We hypothesize that root-
deposited exudates enhance the direct and 
indirect (via microbial communities) destabiliza-
tion, solubilization, and subsequent 
bioavailability of N from MAOM.

Conceptual model illustrating the role of mineral-associated organic 
matter (MAOM) and its continuous and dynamic exchange with the 
soil organic matter and monomer pools (an extension of the Schimel 
& Bennett (2004) model of soil N cycling). 

Illustration of variation in mineral-organic assoications across clay types.

Hypothesized mechanisms of MAOM-N 
destabilization: 
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Both glucose and oxalic acid 
enhanced CO2 respiration and 
the degradation of MAOM 
relative to the control (p<.05).

Gross ammonium production 
was positively associated with 
MAOM-derived CO2 respiration.

No significant differences 
between the control and C 
substrate treatments.
 

Measurements:
CO2 respiration, 13C-CO2, C-acquiring, 
N-acquiring and oxidative enzyme activities, 
gross 

•	Mineral-associated organic matter (<20µm) 
isolated from agricultural soils

•	MAOM diluted with sterile sand, brought to 
ideal moisture conditions, and treated with 3 
separate C substrates

•	15-day incubation with 3 separate harvests 
corresponding to number of C pulses

N-acetyl-glucosaminidase

CO2 Respiration Rates
“Priming Effect”

Degradation of MAOM-C relative to control
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Pulses of C substrate Indicates enzyme activities were signifi-
cantly different from the control (p<0.05)
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r2 = 0.45       p = 0.015
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