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Introduction

e Whistler mode chorus waves can contribute to the outer radiation
belt by accelerating seed electrons (100s of keV) to higher energies.

 The temperature anisotropy of source electrons (10s of keV)
provides the free energy for chorus waves.

e Source & seed electron access to the inner magnetosphere increases
during storm times and is dependent on convection, sub-storm
activity, and conditioning in the plasmasheet.

* Discrepancies in the characteristic solar wind of CMEs and CIRs
create differences in the energy spectrum and composition of the
plasmasheet, convection, and substorm activity.
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e Gary et al. [2005] developed a linear theory proxy, based on plasma
measurements, to infer Chorus wave growth.

* The proxy for chorus growth, Z_, is a product of the hot (1-60 keV) electron
anisotropy and hot electron parallel plasma beta:
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* VAPs used to measure average CME/CIR chorus power and proxy components.

* Figure 4: average VAPs observational values for: (a) observed chorus wave
power, (b) hot e pressure, (c) hot e- plasma beta, (d) hot electron anisotropy:
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Chorus power is comparable between CME/CIR storms.
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Summary

Storm phase epoch analysis of chorus wave
power & linear theory proxy for CMEs/CIRs show:

» Similar levels of chorus activity during
CMEs/CIRs.

» Wave power peaks during main phase on
dawn side, before spreading across the dayside
w/ less intensity during recovery.

» Wave power correlates well spatially w/ proxy
growth, and closely follows the source
electron parallel plasma beta and e- drifts.

Superposed epoch analysis for fixed seed and RB
energies/u during CME/CIR storms show:
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e Stronger seed enhancement, that occurs earlier, and penetrates deeper

Epoch Time (hr)

* Greater substorm activity and convection most likely driving

> 100 kev chorus Seed e- * Chorus strongest in main phase on dawn/pre-dawn sector. In recovery, wave » Stronger, earlier, and deeper penetrating seed
@ Source o power decreases, but remains elevated and spreads across dayside. e enhancements during CME storms.
Ll 10 keV
w * Location of growth proxy, 2, correlates well with measured chorus power. > Larger seed enhancement is possibly driven by
h i . . ..
1keV : :r:zi\slzrs::;ce * Chorus power most closely follows source electron plasma beta. greater substorm activity and convection in
* Anisotropy drops during main phase — waves reduce A, or fresh e isotropic. CME storms.
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» CMEs displayed a lower n,

v,,, and T, than CIRs.

» CMEs had more substorm

activity and stronger
convection.
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in CME storms over CIR storms.
* Larger average radiation belt enhancement in CMEs.

greater seed enhancement in CME storms.
e Stronger convection and more substorm activity gives higher
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normalized to 12 hours. Onset Det Epoch Time (hr)  Onset Dst” . . . : : :
min min * Earlier seed enhancement provides greater opportunity for local energies more access to lower L in the inner magnetosphere.
acceleration; more overlap of chorus with strong seed population.
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* Figure 8: average MagEIS
PSD vs L* for fixed u and
average chorus power.

* Figure 9: PSD in three

different L* ranges.

* Figure 10: Delta PSD -

change in PSD from average
prestorm levels vs L*.
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* Stronger, earlier, and deeper seed PSD enhancement in CMEs.

 CME 150 MeV/G seed population reaches Boyd et al. [2015] threshold
of 1 x 104 (c/MeV-cm)3 for acceleration earlier and more often.

 CME Core population sees a greater net enhancement, which occurs
12-20 hours earlier, and occurs at lower L*.
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* Core enhancement in CMEs is during time with elevated levels
of chorus activity.

* PSD profile of CME enhancement shows a peak at inner L* in
recovery phase — evidence of local acceleration.




