ECOGIG O1l and chemical dispersant alter microbial cycling of organic matter GULF~

with consequences for carbon cycling in the ocean (CT14B-1277) TR DI
Kai Ziervogel (University of New Hampshire), Samantha B. Joye (University of Georgia), and Carol Arnosti (University of North Carolina-Chapel Hill)

v

AbStraCt The microbial oil-degradation network in the ocean includes direct degradation of hydrocarbons (primary oil degradation), as well as subsequent degradation of transformation byproducts and
exopolymeric substances (EPS) through secondary consumers. EPS are produced by oil-degrading microbes to emulsify hydrocarbons and facilitate access to oil. Polysaccharides are the major

constituent of microbial EPS in the ocean. We measured enzymatic hydrolysis of six structurally-distinct polysaccharides as indicator of microbial metabolic responses of seconday consumers to oil and dispersant
additions In two laboratory incubations with either surface or deep water microbial communities from one of the most active natural oil and gas seep in the Gulf of Mexico (Green Canyon block 600). The natural
assemblages were amended with crude oil (water-accommodated fraction - WAF) and chemical dispersant (Corexit 9500) in roller bottles incubated for 1 week (Surface water) and 6 weeks (Deep water). Our results
demonstrate that oil and dispersant additions have the potential to change metabolic responses of secondary consumers with consequences for cycling of organic carbon and oil-contaminants in oil contaminated waters.
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3. Results and discussion

1. Background and research hypothesis
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2. Sampling site and experimental set-up
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