
• Chorus power is comparable between CMEs/CIRs 
– agrees with Spasojevic [2014].
• Chorus strongest in main phase on dawn/pre-
dawn sector. In recovery, wave power decreases but 
spreads across dayside.  
• Location of growth proxy, Σe, correlates well with
measured chorus power.   

• Chorus activity follows drift path of source 
electrons  
• Source electrons (1-60 keV) quickly reach dawn 
w/ enhanced convection of main phase.  
• In recovery periods, source electrons drift across 
the dayside, however their overall flux levels drop as
some drift out through the dayside as open/closed 
drift boundaries change.
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• Whistler mode chorus waves can contribute to 
the outer radiation belt by accelerating seed 
electrons (100s of keV) to higher energies.

• The temperature anisotropy of source electrons 
(10s of keV) provides free energy for chorus 
waves. 

• Source & seed electron access to the inner 
magnetosphere increases during storm times and 
is dependent on convection, sub-storm activity, and 
conditioning in the plasmasheet.

• CMEs and CIRs create differences in the energy 
spectrum and composition of the plasmasheet, 
convection, and substorm activity.

• Van Allen Probes (RBSP) used to create storm 
phased epoch analysis of chorus wave power and 
plasma conditions driving chorus activity - via a 
linear theory proxy - during CME/CIR storms.

• Used RBSP to create a superposed epoch 
analysis of the growth of the seed and radiation 
belt electrons vs L* during CME/CIR storms.
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Van Allen Probes
• HOPE – e- < 60 keV. MagEIS – e- 30 keV – 3 MeV.
• REPT– e- 1 MeV – 20 MeV. EMFISIS –
magnetometer and waves instrument.
Storm Selection
• 25 CME and 35 SIR/CIR Storms are identified 
between 2013-01-01 and 2016-04-16 with a 
minimum Dst* between -50 and -150 nT.
• Storm selection required a single identifiable driver 
(CME/CIR). Periods after the start of a second dip in 
Dst were not used.

• Fig 2: median, mean, and quartile superposed epoch 
sw conditions for CMEs/CIRs. Main phase normalized 
to 12 hrs.

• Fig 3: RBSP MLT/L coverage during CMEs/CIRs.

Ø CMEs displayed a 
lower n, vsw, and Tsw 

than CIRs.

Ø CMEs had more 
substorm activity and 
stronger convection.

Figure	3 CIR	CME	
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• Gary et al. [2005] developed a linear theory proxy inferring chorus growth from plasma parameters.
• Proxy for chorus growth, Σe, is a product of hot (1-60 keV) electron anisotropy, Ae, and hot electron 𝛽𝑒,∥:

Σ𝑒 =
𝑇𝑒,⊥
𝑇𝑒,∥

− 1 𝛽𝑒∥𝛼 											𝛽𝑒,∥ = 	
𝑛𝑒𝑘𝑇𝑒,∥
𝐵2/2𝜇0

• RBSP used to measure average CME/CIR chorus power and proxy components:  (a) observed chorus wave 
power, (b) hot e- pressure, (c) hot e- 𝛽𝑒,∥, (d) hot electron anisotropy:  𝐴 = 𝑇45/𝑇4∥ − 1, and (e) proxy growth.

RBSP Observations of CME/CIR Chorus Wave Activity
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Figure	4CIR	CME	

Ø Similar levels of chorus activity during CMEs/CIRs.
Ø Observe MLT/storm phase dependence of chorus wave power.
Ø Wave power follows changing open/closed drift paths of 10s of keV

source electrons during storm times.

Ø Stronger, earlier, and deeper penetrating seed e- enhancements 
during CME storms. 

Ø Greater likelihood of overlap between seed enhancement and 
chorus during CME storms.

Ø Radiation belt enhancement occurs more often during CME storms 
and reaches lower L*. 

Ø PSD profile of CME enhancement shows signs of local acceleration.
Ø Larger seed enhancement is possibly driven by greater substorm

activity and convection in CME storms.

Superposed Epoch Analysis of CME/CIR Seed and Radiation Belt Electrons
Storm Time Flux

• Using RBSP map 
average seed & 
radiation belt (RB) 
electron response to 
CMEs/CIRs vs L*.

• Figure 5: avg. flux and 
chorus power for fixed 
energies vs L*.

• Figure 6: avg. flux in 3 
different L* ranges.

• Figure 7: Flux change 
from prestorm vs L*.

• Epoch t = 0 at min 
Dst*, main phase 
times are normalized 
to 12 hours.

Storm Time 
Phase Space 

Density

• Gradients of phase 
space density (PSD) 
can reveal aspects of 
the acceleration, 
transport, and loss of 
electron populations.

• Figure 8: avg. MagEIS
+ Rept PSD vs L* for 
fixed μ and avg chorus 
wave power.

• Figure 9: avg. PSD in 
three different L* 
ranges.

• Figure 10: Change in 
PSD from average 
prestorm levels vs L*.

• Stronger seed enhancement, that occurs earlier, and
penetrates deeper in CME storms over CIR storms.

• Stronger radiation belt enhancement in CME storms on 
average compared to CIR storms.

• Earlier seed enhancement provides greater opportunity for local 
acceleration; more overlap of chorus with strong seed population.

• Biggest CME/CIR seed differences are at higher energies/lower L,  
Stronger convection and more substorm activity gives higher energies 
more access to lower L in the inner magnetosphere.

• CME	RB	population	has	a	greater	net	enhancement,	which	occurs	12-20	
hours	earlier,	and	occurs	at	lower	L*.	RB	enhancement	in CMEs	is during	
time	with	elevated	chorus	activity.
• PSD	profile	of CME	enhancement	shows	a	bit	of	a	peak	at	inner	L*.
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• Stronger,	earlier,	deeper	seed	PSD	enhancement	in	CMEs.

• CME	150	MeV/G	seed	population reaches	Boyd	et	al.	[2015]	
threshold	of	1×10-4 (c/MeV-cm)3 for	acceleration	earlier	and	
more	often.
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