

and Physical Sciences

Mt. Washington Extreme Sewage Treatment Plant Upgrade

Daniel Farley, Melissa Gloekler, Lukas Goerigk, Adam Moskal

Faculty Advisor: Dr. Nancy Kinner

Acknowledgements

Client: Michael Pelchat

NHDES Advisor: Kenneth Kessler

Reference Report Provided by: Underwood Engineers

Designer of Extreme Sewage Treatment Plant (ESTP): Lifewater Engineering

Background Information

State Park Area: 60 acres

Visitors: 600,000 Annually (May to October)

Transportation to the Summit: Auto Road, Cog Railway & hiking trails

Funded Solely by: Sales of merchandise, concessions, radio operation

ESTP Design Constraints

Low Visual Impact: Requires a small footprint

Nutrient Removal: Total suspended solids, organic carbon & nitrogen

Extreme Weather: Accessible in winter & summer conditions

Limited Historical Data: Created challenges when modeling the plant

Existing Treatment Plant Schematic

Critical Plant Challenges

- 1. Flow Variation
- 2. Insufficient Aeration
- 3. Intermittent Hydraulics
- 4. "After the Fact" Chemical Addition

. Flow Variation **Annual Influent Flow** 5,000 4,000 2,000 1,000 Mar-15 May-15 Jun-15 Aug-15 Oct-15

3. Intermittent Hydraulics

- Daily Influent Flow: Occurs over 8 hour period
- Flooding Occurs within: The anoxic & aeration tanks
- Lower Efficiency: Flooding decreases retention time such that fewer nutrients can be removed

2. Insufficient Aeration

Parameters	Existing	Design	Aeration Deficit
Average (cfm)	125	207	82
Maximum (cfm)	125	383	258

4. "After the Fact" Chemical Addition

Organic Carbon + Nitrate -> N₂ gas Ammonia + Oxygen -> Nitrate + Acid

Short-Term Pilot Study: Summer 2016 (Proposed)

Equalization Tank: Dampen flow variation and increase cell residence time Internal Recycle: Maintain biomass and increase retention time in the system Attention to Sampling: Increase the frequency, consistency, and location

Improve Aeration

- Change location of aeration input to aeration tank only
- Increase capacity by installing a new blower
- Replace diffusers to increase oxygen transfer efficiency and mitigate clogging

Long-Term Plant Enhancements

Alkalinity & Carbon Source

- Furnish system with automated monitoring and adjustment system to proactively balance water chemistry
- Addition of food sources will optimize denitrification and nitrification processes

Increase Sampling Frequency

- Knowing the water characteristics allows more accurate modeling
- Promotes early identification of inhibitory conditions
- Facilitate the transition for future modifications and upgrades

Establish BOD:COD Ratio

- Organic carbon (BOD) removal is essential for nitrification
- BOD₅ testing is done offsite
- COD is an on-site surrogate for BOD₅
- Ratio is critical for ESTP operability and performance