Comparisons of Primary and Secondary Magnetic Island Evolution in 2D Reconnection
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SIMULATION RESULTS

Motivation and Objectives: Ifrim.ary Island:. formed due to multiple X Secondary Island: born from the electron Open Exhaust: electron distribution Highlight of Unstable Electron Velocity Distributions:
¢ Extended thin current sheets are known to be unstable to the lines in unstable ion current sheet. current layer. I functions from open exhaust region. Vx-Vy and Vx-Vz velocity space distribution functions

formation of magnetic islands (also called plasmoids or flux e o Vx-Vz from both the primary and secondary island.
ropes) [1,2]. The main objective of this poster is to compare | " AR
primary and secondary magnetic islands, and establish for the
first time distinct features in electron velocity distributions for
both types of islands.

¢ Magnetic islands observed during magnetotail reconnection
are effective acceleration sites where electrons can attain
suprathermal energies [3]. The island interior and exterior were
identified based on the assumption that electron distributions in
the island interior are similar to those in the exhaust [4]. The
second objective of this poster is to validate this assumption by
comparing electron distributions inside islands and those in the
open exhaust.
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¢ Hotter, more structured distribution 7 e
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Simulation Parameters:

Open boundary conditions: collisionless, undriven reconnection
with no guide field.

Lobe appropriate beta: 0.0028, m. / m_ = 400,

T./ T, = 5 (Harris Population), @, /Q.=2,L/d =.5,
N, /N, =.05T,/T, =.333
Particles per cell: 600, Number of cells: 1024 x 2560,

Open Exhaust (earlier stage): ¢ Perpendicularly heated distributions, where

—— E— T erpendicutar > 1 are unstable to whistler wave
3 //’/_:

_—.. generation [5].
i * ¢ Multi-component electron distributions may lead to
the generation of nonlinear electron waves, such as the

parallel »

Total number of particles: ~ 1.5 x 10° 4 G electron holes observed in a magnetotail flux rope [6].
Comparison of Island Evolution: Vx-Vy : Primdry Island /. /. ¢ New velocity-space-hole, or 'donut’, structure found in
. 4 4 4 . Vx-Vy electron distribution functions.
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, . space. ¢ Perpendicularly heated populations. ) @ @ distributions N H
IS — : - : ¢ Highly dynamic and very structured ¢ Multiple populations of electrons in both - e ' 3l - I E
Early stage of primary island showing strong density A, . L . ¢ Mostly hot and isotropic electrons, | e 5
: electron distributions as results of active Vx-Vy and Vx-Vz distribution functions. . . . WUUNEII SV
compression (n,) at the core and enhanced electron out-of-plane econnection consistent with previous results [4]. oSO ° oo lmel
flow (Uey) near island boundary (separatrices).
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¢ Strong peak in the negative Vy direction in the secondary , lThg assum.pt}i)n tthat e}llectrtonl dlimbuFlOnS eI AEiETIEie . .
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Growing primary island and newly formed secondary island ¢ New velocity-space-hole structure in Vx-Vy that forms near .0 h , latively , | . .
showing that the secondary island's center has a pronounced boundary of closed field lines and semi-open field lines in P enbeX aust reglgns(iellre rle atlvei y 1S0lropic at early ¢ Comparison with future electron
U, peak, which it inherited from the electron current layer; the primary island, but not in the secondary island. stages, but anisotropies develop at later stages. data from li/lagn(}eltosphenc Muu];s]cah;
: . : fhc N i : : P MMS), to launch in 2014, capable o
rimarv island shows no such U peak. : e S : ¢ Anisotropies in islands are different from anisotropies in ( % )
p y _ ey P ¢ Highly str.uctured electron distribution functions in both islands oxhaust. resolving the types of structures
. | i at all evolution stages. Rt T X BRI . ’ revealed in the electrons of this
. e s lands. istri .utlons can be used to distinguish reconnection x-line . ..
. from o-line.
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Both islands are ejected leftward. The secondary island retains
its U, peak, while the primary island center is void of U,
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peak. A ring of enhanced Uy develops in the primary island
due to the large density gradient (VP drift).

B WN B




	Slide 1

