The Gamma Ray Polarimeter Experiment (GRAPE) is a balloon borne instrument designed for measuring the polarization of astrophysical sources from 50-500 keV. It was first flown on a 26-hour balloon flight in the fall of 2011 from Ft. Sumner, NM. The payload consists of an array of independent Compton polarimeter modules based on scintillation technologies. The ultimate goal of our program is to operate GRAPE in a wide FoV configuration on an LDB flight to study GRBs. For the first balloon flight, GRAPE was configured in a collimated mode to facilitate observations of known point sources so that the polarization measurement capability of GRAPE could be demonstrated. The Crab nebula/pulsar, the active Sun, and Cygnus X-1 were the primary targets for the first flight. Although the Crab was detected, the polarization sensitivity was worse than expected, in part because of a lower-than-expected altitude for much of the flight. Only upper limits on the Crab polarization were obtained. Two M-class solar flares were also observed, with null results that indicate less than 30% polarization levels. This paper will describe the GRAPE payload, review the latest results from the first balloon flight, and present plans for the next GRAPE balloon flight, scheduled to take place in the fall of 2014.

Compton Polarimetry

Compton polarimetry exploits the fact that photons tend to scatter at right angles to their polarization vector. Polarized radiation produces a sinusoidal azimuthal scatter distribution. The modulation μ is proportional to the degree of polarization, and the minimum of the distribution gives the polarization angle.

99% polarized radiation at ~98 keV is produced in the lab by scattering 122 keV photons at 90° from a plastic block. The modulation histogram recorded by the integrated GRAPE instrument (below) is shown.

GRAPE Instrument and Payload

The GRAPE instrument consists of:
- A 4 x 4 array of polarimeter modules, each with 64-element scintillator array, readout MAPMT, and electronics
- Shielding, both passive (0.8 mm Pb/0.8 mm Sn) and active (6 mm plastic)
- An array of cylindrical collimators, providing a $\pm 20°$ field of view
- Power board, module interface board, and instrument computer w/ flash hard drive
- Rotation table: entire instrument is rotated in 4° steps every 13 s to average out geometric asymmetries

The GRAPE balloon payload consists of:
- A two-piece pressure vessel consisting of a flat base plate and upper dome
- Gondola frame constructed out of 80/20 extruded aluminum
- Attitude control system: ADU 5 differential GPS for azimuth determination, azimuthal control rotator (provided by CSBF), and inclinometer/ elevation control motor. Azimuth stability is ~1° RMS
- Thermal control via commandable heaters
- Command and telemetry via the CSBF mini-SIP and low- and high-rate science transmitters

Data Analysis

Geant4 Simulations

The analysis of the GRAPE data relies heavily on Geant4 Monte Carlo simulations to derive the instrument’s energy and polarization response. Shown left to right are the Geant4 mass model of the polarimeter module, instrument array, and pressure vessel interior.

Two types of data were simulated and analyzed:
- PC Events: plastic-to-calorimeter scatter events, used for polarization and spectroscopy analysis
- C Events: single hits in the calorimeters, used for spectroscopy only

Crab Nebula Analysis

Both the PC and C counting rates varied considerably over the course of the flight, dependent on atmospheric depth and temperature. A Principal Component Analysis (PCA) was used to find the relation between the counting rates and these variables, using the plastic shield rates as a proxy for atmospheric depth. This allowed the variation due to these factors to be removed, revealing the count rate due to the Crab (left). Repeating this procedure in multiple energy bands produces a count spectrum, which can be used in spectral analysis.

Events were binned according to the phase of the Crab Pulsar. Off-pulse (i.e., Nebula) events were selected from the phase range 0.5 - 0.88, following Dean et al. (2008, Science, 321, 1183). An analysis of the modulation histogram from these events, in the 50 - 120 keV band, was unable to constrain the polarization of the Crab Nebula (right). A combination of reduced altitude at nighttime and insufficient passive shielding resulted in reduced source counts and increased background counts. The minimum detectable polarization (MDP) for this observation was 109%.

Solar Flare Analysis

The Sun was very active during our observations, and two M-Class solar flares were observed just before the end of the flight (left). For transient events, background subtraction is trivial. No modulation was observed in the 40 - 110 keV band (right); preliminary analysis indicates that the MDP for this flare was 29% (at the 99% confidence level).

Plans for 2014 Balloon Flight

The GRAPE payload is scheduled to fly a second time from Ft. Sumner, NM, in the Fall of 2014. Several modifications are being made, the most important of which include the following:
- The instrument array will be expanded to 24 polarimeter modules
- The passive shields and collimators will be upgraded to add several mm of lead

Simulations of the in-flight background have been developed, based on data from the 2011 balloon flight (left). The shielding modifications being implemented for the 2014 balloon flight will reduce the background per module by a factor about 2.5x (right).

With these improvements, we expect to achieve a MDP level of ~20% for the Crab Nebula (off-pulse), in the 50-150 keV energy band, at the 99% confidence level.

For more information, please contact Mark McConnell - Mark.McConnell@unh.edu