Introduction & History

After the discovery of the Friedel-Crafts alkylation, AlCl₃ catalyzed rearrangements were explored in the 1930’s and 1940’s due to the observation of meta-disubstituted products rather than the usual ortho + para. Baddeley reported the first rearrangement of the para to meta isomer. Allen and Pingert studied the rearrangement of terphenyl isomers via Friedel-Crafts catalysis, and Olah and co-workers later reported the product distribution of the three isomers upon heating with AlCl₃, shown in **Scheme 1**.

In our group, the rearrangements of substituted arenes via Friedel-Crafts catalysis were studied, but inconsistent due to the hydroscopic nature of AlCl₃. To make the results more reliable, trifluoromethanesulfonic acid (TfOH) in dichloromethane (DCE) was used as an alternative. Mechanistic details of the terphenyl rearrangements were explained by Olah and co-workers, equating the preference for the meta isomer to the formation of the most stable carbocation, shown in **Scheme 2**.

This rearrangement occurs through an ipso arenium ion.

Expected Results

In this project we explored the rearrangements of substituents on the highly conjugated pyrene. Electrophilic addition onto pyrene occurs most commonly on the 1 position, shown in **Scheme 3**. We wanted to show the rearrangement to the 2 position by acid catalysis.

Rearrangements

We carried out DFT computations (Figure 3), which suggested a high barrier that would require vigorous reaction conditions for the rearrangement of 1-phenylpyrene. Consequently, the first experiments using 1,1’-dipryenyl were performed at 84 °C with 1.1 M TfOH. Unexpectedly, this gave predominantly pyrene. Milder reaction conditions appear to give the expected isomerization. Results are compiled in **Table 1**.

Synthesis

First, 1-bromopyrene was synthesized via electrophilic bromination. Once this was purified and characterized, Suzuki-Coupling was carried out using phenylboronic acid and a palladium (0) catalyst in the microwave reactor, shown in **Scheme 4**.

Computational Studies

B3LYP/6-31G* computations support aryl migration followed by hydrogen atom migration to give a low energy carbocation. This supports the prediction of rearrangements in pyrene derivatives.

Conclusions

This work is still in progress. We have strong evidence for the expected rearrangements in bipyrene, but the products need to be isolated and completely characterized. Computations give a glimpse of reasoning into why 1,1’-dipryenyl would dissociate into pyrene, but the results are still not definitive. Future work will include the rearrangement of 1-phenylpyrene and the isolation of 1,2'-dipryenyl and 2,2'-dipryenyl to confirm 1H NMR results.

References

Acknowledgements

We are grateful for generous support from the National Science Foundation (CHE-0910826).