Coupled elasto-plastic self-consistent and finite element crystal plasticity modeling: Applications to sheet metal forming processes

Milovan Zecevic and Marko Knezevic
Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA

Introduction
Sheet metal forming simulations are usually performed with shell finite elements. We investigate differences in cup drawing predictions between conventional and continuum shell elements while using an elasto-plastic self-consistent (EPSC) model as a constitutive relation [1].

Material
- Calibration of hardening parameters.

Results
Deep drawing simulation of AA6022-T4 sheet is performed with conventional and continuum shell elements. The results are compared after forming and after springback.

The blank holder force is set to 5000 N. The coefficient of friction is set to 0.05.

Conclusion
The coupling of EPSC model with shell finite elements was successfully performed. Both continuum and conventional shell elements predicted similar stress levels and stress distribution after forming, while the cup shape and residual stress after springback exhibited differences.

Acknowledgments
This work is based on a project supported by the National Science Foundation under grant CMMI-1301081. The authors acknowledge JaeHyun Choi, Frederic Barlat and Timothy Barrett for help with FE simulation set up.

References