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Introduction

Non-monotonic safety factor profiles show promise for improved
confinement but may be susceptible to double tearing mode (DTM)
instabilities. Two (or more) nearby rational surfaces may couple and
interact both linearly and nonlinearly[1].
Many double-tearing mode studies are performed in a cartesian slab
geometry. In force-free equilibria the DTM is strongly localized near the
tearing surfaces, which suggests the equivalence of cylindrical and slab
geometries. In case of force-balanced equilibria and nonlinear behavior,
however, it is unclear if this equivalence holds. We present cylindrical
simulation results of m = 2, n = 1 DTMs in the presence of an ITB-like
pressure gradient which exhibit behavior similar to the ideally unstable
m = 1 kink tearing mode. This behavior is not present in equivalent
cartesian simulations.

Equilibria

Cylindrical We use the non-monotic safety factor profile from Ref [2]:

q(r) =q0F1(r){1 + (r/r0)
2w(r)}1/w(r) r0 = rA|[m/(nq0)]

w(rA) − 1|−1/[2w(rA)]

w(r) =w0 + w1r
2 F1(r) = 1 + f1 exp{−[(r − r11)/r12]

2}

with the constant values: rA = 0.655, w0 = 3.8824, w1 = 0, f1 = −0.238,
r11 = 0.4286, r12 = 0.304, m = 2, n = 1. q0 may be varied near 2.5 to change
the separation D between two q = 2 surfaces. Assuming Bz0 = Rmajor = 10
we find the in-plane field Bθ. For this work we fix q0 = 2.5, giving D ≈ 0.26.
Density profiles are of the form [3]:

N(r) = N0{1− (1−Nb
tanh(r0/δN ) + tanh[(r − r0)/δN ]

tanh(r0/δN ) + tanh[(1− r0)δN ]
}

Where N0 = 1 and r0 is chosen equidistant from the two q = 2 surfaces.
Temperature T = 1 is uniform.

Cartesian To approximate the helical field we choose:

By(x) = −B0
y(tanh[(x− x+

0 )/λ+]− tanh[(x− x−0 )/λ−] + 1)

where B0
y = 0.015, x±0 = ±D/2 = ±0.13, λ+ = 0.05, λ− = 0.1. The same

density profile is used with r → x, r0 = 0, and the asymptotic guide field
Bz0 = 10 is varied to maintain pressure balance.
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Nonlinear Results

MRC-3D Model

E = −vi ×B +
di
n

(J×B) + ηJ− η2∇2J

∂ρ

∂t
+∇ · (ρv −D∇ρ) = 0

∂ρv

∂t
+∇ · [ρvv −BB + I(p + B2/2)− ρν∇v] = 0

∂Te
∂t

+ v · ∇Te + (γ − 1)Te∇ · v = 0

ps = ρTs, p = pe + pi = (1 + τ )ρTe

Where τ = Ti/Te, γ = 5/3 for an adiabatic equation of state, η is the
magnetic resistivity, di = 0 is the ion inertial length , ν is the fluid
viscosity, and D is a particle diffusivity parameter.
Faraday’s Law is used to evolve B.

MRC-V3 Simulation Suite

General features of the Magnetic Reconnection Code include:

I Optimized, parallel numerics with the PETSc library

I Non-uniform spatial meshes

I Generalized curvilinear coordinates

I Adaptive explicit and implicit time-stepping

I Portable hdf5 data output

Additionally, the specific code used in this work, mrc-3d, features:

I Python based bode generation

I Runtime configurable Settings

I Python bindings to internal C routines

I 1D linear and 2D nonlinear implementations

Future Work

The work presented here suggests double tearing modes may couple to a
resistivity-independent instability in cylindrical geometries. To better
understand this behavior:

I Simulate a wider range of pressure gradient scale heights and lengths
(δN , Nb), and introduce temperature gradients of the same form.

I Vary the functional form of the pressure profile

I Examine the dependence of the saturated current sheets on the poloidal
and axial mode numbers (m, n)

Further high-resolution nonlinear simulations and the introduction of
Hall physics will provide insights into:

I Differences between the ‘explosive’ late nonlinear phase in cartesian and
cylindrical geometries

I The potential of diamagnetic effects to stabilize the DTM, similar to the
quasi-linear stabilization of the m = 1 kink tearing mode [4]

I Viability of comparison to our previous Particle-in-Cell simulations
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