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Introduction
The purpose of this project was to port the particle in cell code, PSC, to Intel’s new Xeon Phi processor architecture and to measure the performance benefits the architecture provides. The Xeon Phi is built especially for
high performance and parallel programming in mind and has 50+ cores per card. In addition the Xeon Phi has 512 bit SIMD vectors for vectorizing computation. This is a significant increase over the 128 bit SIMD vectors in
Intel’s Xeon architecture. Getting the computational kernel of PSC, which uses hardware dependent instructions, to use the 512 bit SIMD vectors provided a substantial increase in performance for this code and would likely
have analogous effects on similar codes.
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Particle-in-Cell (PIC) Plasma Codes

I Fully kinetic (electrons and ions are treated as particles)
I Hybrid (ions are treated as particles, electrons as fluid)
I Multi-Fluid, One-Fluid (ions and electrons are treated as

fluids)

Source: LANL

Simulation Codes

Plasma Simulation Code (PSC)

I 3D and reduced spatial dimensions (1D, 2D)
I relativistic, electromagnetic
I boost frame, moving window, PMLs, collisions, ionization...
I modular architecture: switching from legacy Fortran

particle pusher to GPU pusher can be done on the
command line.

H3D Hybrid Code

I 3D spatial dimensions
I ions represented as particles
I electrons represented as fluid

What does it take to model an experiment? Progress in Particle Simulations

First glimpse of 3D effects
Intel MIC Architecture: An Intel Co-
Processor Architecture 

Many cores, and many, many more threads 
Standard IA programming and memory model 
Standard networking protocols 
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Source: Kirk, Skaugen, ISC 2010 keynote 

Intel® Knights Corner Technical 
Specifications 

Core Count > 50 cores 

IO Bus PCIe 

Operating System 
on Card 

Linux-based 

Networking 
Capability 

IP-Addressable 

Intel® Knights Corner (Intel® 
KNC) is the first commercial 
product employing the Intel® 
Many Integrated Core (Intel® 
MIC) architecture.  

Current KNC deployments 
utilize pre-production 
hardware; thus, current 
performance does not 
necessarily indicate that of 
the commercial product. 

Range of models to meet application needs 
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Spectrum of Programming Models and Mindsets 
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Multi-Core Centric                                  Many-Core Centric 

Mul$-‐Core	  Hosted	  
General	  purpose	  
serial	  and	  parallel	  

compu0ng	  

Offload	  
Codes	  with	  highly-‐	  
parallel	  phases	  

Many	  Core	  Hosted	  
Highly-‐parallel	  codes	  

Symmetric	  
Codes	  with	  balanced	  

needs	  
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Xeon MIC 
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Reverse	  Offload*	  
Codes	  with	  highly-‐	  

serial	  phases	  

*  Reverse offload is 
not supported by 
directives (unlike 
offload). 

Via MPI, 
sockets, 

etc… 

H3D Scaling on Beacon

PSC on Accelerators

Multi-level decomposition of the problem, expose
parallelism

I At the top-level, decompose spatial domain into patches.
Each MPI process gets assigned one or more patches.
Patches communicate via ghost cells / particle exchange.

I (Hybrid level could be introduced here: Each MPI process
will distribute patches onto a set of cores or GPUs using
OpenMP / threads)

I GPU: Each patch gets further divided into blocks (a.k.a.
supercells) of multiple cells. These blocks are handled (in
parallel) by threadblocks.

I Particles in a block are processed in parallel by threads in
the threadblock (GPU) / by SIMD instructions (CPU/MIC).

PSC on Accelerators

Particle-in-cell algorithm
for timestep n = 0,1,2,...:

for each particle m:
advance momentum: ~pn

m → ~pn+1
m

(using interpolated ~En+1/2, ~Bn+1/2)
advance position: ~xn+1/2

m → ~xn+3/2
m

deposit current density contribution~jn+1
m onto mesh.

advance fields: ~En+1/2, ~Bn+1/2 → ~En+3/2, ~Bn+3/2 using~jn+1.

PSC on GPUs – TitanDev/BlueWaters Performance

16-core AMD 6274 CPU, Nvidia Tesla M2090 / Tesla K20X

Kernel Performance
[particles/sec]

2D push & V-B current, CPU (AMD) 130 × 106

2D push & V-B current, GPU (M2090) 565 × 106

2D push & V-B current, GPU (K20X) 710 × 106

For best performance, need to use GPU and CPU simultaneously.
Patch-based load balancing enables us to do that: On each node, we have 1
MPI-process that has ≈ 30 patches that are processed on the GPU, and 15
MPI-processes that have 1 patch each that are processed on the remaining
CPU cores.

PSC on MIC

Varying the number of patches

512 × 512 mesh, divided into n × n patches, run on 16 Intel
CPU cores.

PSC on MIC

Single core performance

LRBni intrinsics: speed up of 3.9×, that’s 2.1× slower than
same kernel on a CPU core.

PSC on MIC

Vectorizing PSC for MIC

I Start from SSE4.1 version that pushes 4 particles at a time.
I Implement SIMD emulation layer, initially for vectors of 4

floats.
I Change vector length to 16 in emulation.
I Replace emulation by _mm512_* intrinsics.
I Look at assembler code.

for (int k = 0; k < ppsc->nr_kinds; k++) {
dq_kind[k] = .5f * ppsc->coeff.eta * dt

* ppsc->kinds[k].q / ppsc->kinds[k].m;
}

PSC on MIC

Vectorizing PSC for MIC

kernel version run time
scalar version: 609 ms
512-emu version: 2244 ms
512-mic version: 373 ms
forceinline: 169 ms
data layout: 139 ms
field access: 123 ms

Achieved a speed up of 5× over scalar code.

PSC on MIC

Data layout issues

I Data layout used previously was array-of-struct.
I To be able to use SIMD instructions, need to re-arrange.

For vectors of 4 floats, can be done easily with transpose.
I On MIC, can use gather/scatter intrinsics
I But this is what happens:

..L18
vgatherdps 4(%rdx,%zmm0,4), %zmm8{%k4} #418.10
jkzd ..L17, %k4 # Prob 50% #418.10
vgatherdps 4(%rdx,%zmm0,4), %zmm8{%k4} #418.10
jknzd ..L18, %k4 # Prob 50%

%#418.10
..L17

I A simple load/store benchmark showed improvement of
66.634 ms -> 31.934 ms when avoiding scatter/gather by
changing data layout to array-of-struct-of-simd-vectors.
Overall about 20% speed-up.

PSC on MIC

Strong Scaling

push_prts_p

Summary / Outlook

I Initial results of running PSC on Intel MIC look promising.
Performance for particle momentum update is comparable
to current GPUs (> 1 billion particles / second).

I Current deposition still needs to be ported / optimized.
I Load balancing of particle-in-cell using subdivision into

many patches and using a space-filling curve to distribute
the load works well and provides flexibility in adapting the
code to heterogeneous architectures.

I Particle-in-cell can be accelerated by GPUs and Intel MIC
significantly, but involves a lot of manual work for proper
tuning.

I Intel MIC is less effort to port (vectorize) than GPUs.
I Debugging is easier for MIC.
I Cannot rely on compiler, even with intrinsics still need to

look at the generated assembly.
I Sorting is another open issue.


