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Often available baseline policy (e.g., deployed, a simple heuristic)

Data-driven MDP models are imprecise

Safe policy: Guarantee that the solution to the imprecise model is better than baseline policy
We use robust MDPs and show why to minimize baseline regret

Regret minimization improves on baseline policy with only few samples

Discounted infinite horizon MDP: Compute 7 : states — actions
Transition probability P is unknown, available limited samples of state-to-state transitions
Return for discount factor v € [0, 1]:

return(policy, model) = p(7, P) = Ep,
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Baseline policy mg: best known solution

. Estimate an average transition model P from samples:

P(Sl, 0, 59) = | samples_from(sy, a) N samples_to(so)]

| samples from(sq, a)]

. Solve a regular MDP with average model P

TA € argmax return(7, P) (1)

Simulate samples from an assumed true model
Evaluate with respect to true model
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Optimized policy is significantly worse than baseline policy with few samples (large uncertainty)
Decreased performance is inapparent from the solution or average model alone

Represent uncertainty due to limited samples:

| samples_from(sy, a) N samples_to(s9)] constants

P(s1,a,s9) =

| samples_from(sq, a)] | samples_from(sq, a)]

Construct set of plausible transition probabilities: (e.g. concentration inequalities)

P {p ~P(s,a )i <els.a)} efs.a) ~\/

Solve for a robust solution (lower bound):

constants

HP(Sv a, )

| samples from(sq, a)]

TR $— arg max min return(m, P 2
R g max min (m, P) (2)

Accept only if surely outperforms baseline policy 7pg:

min return(mr, ) > max return(ng, P
PeP (MR, P) 2 PeP (78, P)
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Accept the robust solution only if it is guaranteed to be better than the baseline policy

Otherwise, use the baseline policy
Reject Accept
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Problem (2) is non-convex: Tractably solve using robust Markov decision process (a game with nature)
Rectangular uncertainty sets (independent uncertainty sets between states and actions)

Similar properties as regular MDPs (Markov policies optimal), easy to solve

Robust Bellman optimality:

— max min
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reward(s, a) + 7y - Z P(s,a,s)v*(s")
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Guarantees solution is no worse than baseline

» All or nothing behavior even when some states are better known than others
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Can we better leverage the model to get improvement with few samples?

» State s transition probabilities are certain

» State sy transition probabilities are uncertain
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Policy 7™ always better than baseline g

Method 2 does not improve on baseline in this example:
min return(z”, P) = —9 max return(mg, P) = +10
PepP PeP
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» Be more precise about the impact of model uncertainty on both improved and baseline policies

» Considering confidence intervals alone is insufficient, must consider the response of return with respect

to model uncertainty (£ = P)
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» Minimize robust baseline regret:
Tg = arg max min (return(w P) — return(ng, P)) (3)
T PeP
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Improves baseline solution with very few samples

Performance loss: loss(m)
Method 1: Solve average model: mp

= return(7*, P*) — return(w, P*); P*

loss(mp) <

Method 2,3: Robust solution: mg

(1 =7

2y

)2

loss(mg) < min {

(1 -

Showed that it is NP hard to solve (3) (via an SAT reduction)
Proposed a simple approximate algorithm for solving (3)

Is the true unknown model

max([|r ool exloc )

5 el lossm;)}

Optimal policy in (3) may be randomized; arbitrarily better than the best deterministic policy

Case study using a realistic energy storage and arbitrage problem

Most approaches based on model-free methods

Off-policy learning and optimization (Perkins2002a; Thomas2015; Hallak2015)

Robust /safe policy improvement (Pirotta2013)
Conservative policy iteration (Kakade2002)

Policy improvement with high confidence (Thomas2015a)

Robust MDPs (lyengar2005; Wiesemann2013)
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