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Contribution: Model-based policy improvement

I Often available baseline policy (e.g., deployed, a simple heuristic)

I Data-driven MDP models are imprecise

I Safe policy: Guarantee that the solution to the imprecise model is better than baseline policy

I We use robust MDPs and show why to minimize baseline regret

I Regret minimization improves on baseline policy with only few samples

General problem setting

I Discounted infinite horizon MDP: Compute π : states→ actions

I Transition probability P is unknown, available limited samples of state-to-state transitions

I Return for discount factor γ ∈ [0, 1]:

return(policy,model) = ρ(π, P ) = Ep0

 ∞∑
t=0

γt rewardt


I Baseline policy πB: best known solution

Method 1: Solve average model (standard approach)

1. Estimate an average transition model P̄ from samples:

P̄ (s1, a, s2) =
| samples from(s1, a) ∩ samples to(s2)|

| samples from(s1, a)|
2. Solve a regular MDP with average model P

πA ∈ arg max
π

return(π, P̄ ) (1)

Benchmark problem results

I Simulate samples from an assumed true model

I Evaluate with respect to true model
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I Optimized policy is significantly worse than baseline policy with few samples (large uncertainty)

I Decreased performance is inapparent from the solution or average model alone

Method 2: Simple robust solution

I Represent uncertainty due to limited samples:

P̄ (s1, a, s2) =
| samples from(s1, a) ∩ samples to(s2)|

| samples from(s1, a)| ±
√

constants

| samples from(s1, a)|
I Construct set of plausible transition probabilities: (e.g. concentration inequalities)

P =
{
P : ‖P̄ (s, a, ·)− P (s, a, ·)‖1 ≤ e(s, a)

}
e(s, a) ∼

√
constants

| samples from(s1, a)|
I Solve for a robust solution (lower bound):

πR ← arg max
π

min
P∈P

return(π, P ) (2)

I Accept only if surely outperforms baseline policy πB:

min
P∈P

return(πR, P ) ≥ max
P∈P

return(πB, P )

Accepting the robust solution

I Accept the robust solution only if it is guaranteed to be better than the baseline policy

I Otherwise, use the baseline policy
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Solution using robust MDPs

I Problem (2) is non-convex: Tractably solve using robust Markov decision process (a game with nature)

I Rectangular uncertainty sets (independent uncertainty sets between states and actions)

I Similar properties as regular MDPs (Markov policies optimal), easy to solve

I Robust Bellman optimality:

v?(s) = max
a

min
P∈P

reward(s, a) + γ ·
∑
s′∈S

P (s, a, s′) v?(s′)


Benchmark problem results
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Simple robust

I Guarantees solution is no worse than baseline

I All or nothing behavior even when some states are better known than others

I Can we better leverage the model to get improvement with few samples?

How to do better with a model

I State s0 transition probabilities are certain

I State s1 transition probabilities are uncertain

s0start

a1

a2

s1 a1

+10/γ

−10/γ

πB 0 P ?

P1π? 1

π?

πB

I Policy π? always better than baseline πB
I Method 2 does not improve on baseline in this example:

min
P∈P

return(π?, P ) = −9 max
P∈P

return(πB, P ) = +10

Method 3: Robust baseline regret (new approach)

I Be more precise about the impact of model uncertainty on both improved and baseline policies

I Considering confidence intervals alone is insufficient, must consider the response of return with respect
to model uncertainty (ξ = P )
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I Minimize robust baseline regret:

πS = arg max
π

min
P∈P

(
return(π, P )− return(πB, P )

)
(3)

Benchmark problem results
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I Improves baseline solution with very few samples

Guarantees on performance loss

I Performance loss: loss(π) = return(π?, P ?)− return(π, P ?); P ? is the true unknown model

I Method 1: Solve average model: πA

loss(πA) ≤ 2γ

(1− γ)2
max
π

(
‖rπ‖∞‖eπ‖∞

)
.

I Method 2,3: Robust solution: πS

loss(πS) ≤ min

{
2γ

(1− γ)2
‖rπ?‖∞‖eπ?‖1,u?, loss(πB)

}

Other notable results (see the paper)

1. Showed that it is NP hard to solve (3) (via an SAT reduction)

2. Proposed a simple approximate algorithm for solving (3)

3. Optimal policy in (3) may be randomized; arbitrarily better than the best deterministic policy

4. Case study using a realistic energy storage and arbitrage problem

Related work

I Most approaches based on model-free methods

I Off-policy learning and optimization (Perkins2002a; Thomas2015; Hallak2015)

I Robust/safe policy improvement (Pirotta2013)

I Conservative policy iteration (Kakade2002)

I Policy improvement with high confidence (Thomas2015a)

I Robust MDPs (Iyengar2005; Wiesemann2013)
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