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Introduction

Examining controls on dissolved organic carbon quantity and quality in U.S. rivers

Kevin W. Hanley', Wilfred M. Wollheim', Joseph Salisbury?, George Aiken?

- Dissolved organic carbon (DOC) in rivers is a critical component of the global carbon cycle and both its quantity
and quality are important parameters in numerous fields of study, from water quality to coastal oceanography.

- DOC quantity in rivers can be studied in terms of either flux or concentration — both are important:
- Flux of DOC from the continents to the ocean is a crucial parameter in fields of study like the global carbon

cycle and coastal eutrophication

- Concentration is more important when investigating fields like photochemistry and microbial ecology

- DOC quality — composition of the heterogeneous assemblage of organic molecules that makes up DOC
- Specific ultraviolet absorbance (SUVA,;5,): UV absorbance at 254nm normalized to DOC concentration
- Measure of aromaticity (\Weishaar et al.,
- Quality drives reactivity — biological remineralization, photochemistry, and pollutant complexing and transport

2003)

- Both large and small basins are important to study: large basin DOC flux represents the sum of all terrestrial
biogeochemical influence, while small headwater basins provide something closer to an unprocessed endmember

- Question 1: Are the same relationships that are reported in the literature between watershed-scale
characteristics and DOC quantity among small basins also observable among large and continental-

scale rivers?

- Question 2: Can some of these same watershed-scale characteristics also explain variability in DOC
quality in terms of SUVA,,, or is quality independent of characteristics like wetland-cover and

hydrology?

- Question 3: What drives DOC quantity and quality variability in time among small basins? Are these
drivers remotely observable, enabling us to predict DOC variability in ungauged systems?

Methods

- Analysis of 17 large rivers in the National Stream Quality Accounting Network (NASQAN)

- DOC concentration and SUVA,;, samples taken from 2002 to 2010
- Catchments heterogeneous and sampling stations located near the mouth of each river, upstream of tidal

influence (Fig. 1).

- Dally discharge data procured from the USGS National Water Information System
- Wetland coverage from GIS analysis of the National Land Cover Dataset (NLCD)
- LoadRunner, front end to USGS’s LOADEST, used to estimate mean-annual [DOC] and SUVA
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Figure 1. Map of large-river stations
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- Analysis of approximately 2000 small streams in the USGS National Water Information System (NWIS)

- Daily discharge (Q), discrete [DOC] and SUVA,;,, and site information (lat/long) downloaded from the NWIS
- In order to compare among basins, runoff (RO) was caclulated as discharge/basin area
- Basins were < 100km?, heterogeneous, and distributed throughout the United States

- Landcover data for each station was derived from accumulated upstream NLCD values in the stream-network

of the National Hydrography Dataset (NHDplus)
- Contributing watersheds for each gauging station delineated using the NHDplus BasinDelineator tool
- Mean daily MODIS indices were calculated for each of the delineated watersheds
- Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI), Gross Primary Production (GPP)
- Hydrograph divided into baseflow and stormflow following Eckhardt (2005)
- As an indicator of stormflow intensity, we calculated Sy as the ratio of stormflow to total discharge
- Mean antecedent values of Q, Sg, EVI, LSWI, and GPP calculated over 2, 4, 8, 16, 32, 64, and 128 days.

DOC in Large Rivers

- DOC concentration and SUVA,;, were
strongly correlated with the percent wetland-
cover of the watershed.

- Two outliers existed: St. Lawrence and
Colorado rivers
- large lakes or impoundments upstream
of mouth
- very low SUVA is associated with
algogenic DOC (Henderson 2008)
rather than a terrestrial signal

- This indicates that mean annual DOC quality,

in terms of SUVA, can be explained by
wetland-cover in large basins receiving
minimal algogenic contribution to the DOC

DOC in Small Streams
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Figure 3. Linear regressions representing the

relationship between DOC concentration and percent

wetland-cover.
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Figure 4. Multiple linear regression for the
relationship between [DOC] and basin attributes —
line is 1:1
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Figure 5. Measured vs. modeled [DOC] for site
01422747 in Walton, NY = line is 1:1

Conclusions and Future Work

SUVA,z, response to wetland-cover

- Results also suggest that stormflow is an important driver of [DOC] variability in time
- Remotely sensed characteristics, like antecedent GPP can improve prediction of [DOC] variability

[DOC] (mg/l) - modeled
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Log Transformed (outliers removed):
log(suva) = 0.159log(wetlands) + 0.964
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Figure 4. Linear regression for the relationship
between the natural log of SUVA and the natural log
of % wetland-cover before (dotted grey line) and after
(black line) the removal of two outliers (green points).

- We evaluated a series of potential drivers of [DOC]:

Across basins, the Si was the hydrological parameter most able to explain [DOC] variability
Mean EVI, GPP, and LSWI were intercorrelated and able to explain [DOC] variability

- GPP was most normally distributed; its 64-day antecedent was best correlated with [DOC]
Coniferous forest (Lg) and herbaceous wetland cover (L,,) explained [DOC] variability
Multple regression developed for [DOC] across all basins (Figure 4):

IN([DOC]) ~ Sg + GPPg4qay + IN(Le) + In(Lyy)

- Some basins were well described by the model (Figure 5) and others were not (Figure 6)
- Differences among basin types or in basin characteristics that may have led to this
divergence have not yet been identified and are the subject of continuing work

- We also evaluated basin-scale characteristics as potential drivers of SUVA,;,

- Several time-varying parameters, such as MODIS indices, were significant, but explained less

than 2% of variability in SUVA,;,

- Of drivers we investigated, variability in SUVA,;, was best explained by wetland-cover
- Wetland cover does not vary within basins and is thus limited to describing basin-mean
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SUVA,;, (Figure 7)
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- Enable the estimation of DOC flux from ungauged rivers to the coastal ocean
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Figure 6. Measured vs. modeled [DOC] for site
01466500 in Byrne State Forest, NJ —line is 1:1
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- No remotely sensed or hydrological basin characteristics appear to drive temporal variability in SUVA,z,
- Wetland-cover explains some variability in mean-annual SUVA,,;,, but future work should seek to identify
processes that drive SUVA,,;, variability in time

- Results will also be useful in the development of DOC loading algorithms for use in continental-scale modeling
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Figure 7. Linear regression representing the relationship
between mean SUVA,;, and % wetland-cover of a basin

- These results indicate that similar processes control DOC quality and concentration in large rivers and in small rivers — strong positive [DOC] and
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