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Motivation 
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River networks are important components of the global 

carbon cycle, and are most often sources of greenhouse 

gases (GHGs) to the atmosphere (Butman and Raymond, 

2013, Battin et al., 2016).  
 

While recent investigations have begun to incorporate 

aquatic systems into continental carbon budgets (e.g. 

Butman, 2016), our understanding of what drives GHG 

dynamics across river networks is poorly constrained.  
 

As urban areas continue to expand globally, a better 

understanding of the effect of human activities on aquatic 

carbon and GHG dynamics is needed. Here, we begin to 

address the question:  
 

How does urbanization affect GHG dynamics in river 

networks? 

We conducted a survey of 45 stream and river sites in a sub-

urban river network in New England (Ipswich River, MA), 

as part of the Plum Island Ecosystems LTER project.  
 

Water samples were analyzed for physical and chemical 

characteristics, including dissolved carbon dioxide (CO2), 

methane (CH4), nitrous oxide (N2O), and the nitrogen to 

argon ratio (N2:Ar).  
 

Sampling sites spanned an urbanization gradient (1% - 90% 

developed) and included headwater streams, major 

tributaries, and sites along the main stem.  
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N2O displays strong correlation with land use, suggesting 

inputs from a developed landscape can increase N2O 

production. 

 

CO2 correlates with measured N2:Ar, which can serve as a 

proxy for both lower dissolved oxygen and aeration rates.  

 

The lack of correlation between CH4 and land use is likely a 

result of measuring dissolved concentrations rather than 

ebullitive fluxes, and a dependence on unmeasured, in-

stream variables (e.g. sediment depth, organic content, etc.; 

Stanley et al., 2016). 

Site Description and Methods 

Conclusions 
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pCO2 Related to D.O. and Aeration Only N2O Displays Relationship with Land Use  

GHG Concentrations Independent of Stream Size 

Loadings from a developed landscape, 

likely nitrate, are important in 

explaining the variability of N2O 

concentration. 

Similar concentrations do not equate to 

similar fluxes between size classes. 

Moreover, sources can vary significantly 

(Figure from Hotchkiss et al., 2015). 
 

Figure adapted from Wollheim et al. (2015) 
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CO2 correlates strongly with N2:Ar. Higher N2:Ar (and CO2) 

is achieved under low O2 conditions and aeration rates, 

which allow for accumulation in the water column. 
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The range of CH4 concentrations is 

greater in forested systems, possibly a 

result of more heterogeneous in-stream 

conditions (Stanley et al., 2016).  
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