

Spatial Patterns of Greenhouse Gases Across an Urbanization Gradient in a Suburban River Network – H23I-1792 Andrew Robison^{1*}, Eliza Balch², and Wil Wollheim¹ ¹University of New Hampshire, ²Earlham College, *Contact email: andrew.robison@unh.edu

Motivation

- River networks are important components of the global carbon cycle, and are most often sources of greenhouse gases (GHGs) to the atmosphere (Butman and Raymond, 2013, Battin et al., 2016).
- While recent investigations have begun to incorporate aquatic systems into continental carbon budgets (e.g. Butman, 2016), our understanding of what drives GHG dynamics across river networks is poorly constrained.
- As urban areas continue to expand globally, a better understanding of the effect of human activities on aquatic carbon and GHG dynamics is needed. Here, we begin to address the question:
- How does urbanization affect GHG dynamics in river networks?

Site Description and Methods

Figure adapted from Wollheim et al. (2015)

- We conducted a survey of 45 stream and river sites in a suburban river network in New England (Ipswich River, MA), as part of the Plum Island Ecosystems LTER project.
- Water samples were analyzed for physical and chemical characteristics, including dissolved carbon dioxide (CO_2) , methane (CH₄), nitrous oxide (N₂O), and the nitrogen to argon ratio (N_2 :Ar).
- Sampling sites spanned an urbanization gradient (1% 90%) developed) and included headwater streams, major tributaries, and sites along the main stem.

Only N₂O Displays Relationship with Land Use

GHG Concentrations Independent of Stream Size

Similar concentrations do not equate to similar fluxes between size classes. Moreover, sources can vary significantly (Figure from Hotchkiss et al., 2015).

100

% Forested

pCO₂ Related to D.O. and Aeration

 CO_2 correlates strongly with N₂:Ar. Higher N₂:Ar (and CO_2) is achieved under low O_2 conditions and aeration rates, which allow for accumulation in the water column.

Conclusions

N₂O displays strong correlation with land use, suggesting inputs from a developed landscape can increase N_2O production.

 CO_2 correlates with measured N₂:Ar, which can serve as a proxy for both lower dissolved oxygen and aeration rates.

The lack of correlation between CH_4 and land use is likely a result of measuring dissolved concentrations rather than ebullitive fluxes, and a dependence on unmeasured, instream variables (e.g. sediment depth, organic content, etc.; Stanley et al., 2016).

Works Cited

Battin, T.J., et al. (2009) The boundless carbon cycle, Nat Geosci, 2(9): 598-600. Butman, D., and P.A. Raymond (2011) Significant efflux of carbon dioxide from streams and rivers in the United States, Nat Geosci, 4(12): 839-842.

Butman, D., et al. (2016) Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting, P Natl Acad Sci USA, 113(1): 58-63. Hotchkiss, E.R., et al. (2015) Sources of and processes controlling CO₂ emissions change with the size of streams and river, Nat Geosci, 8: 696-699.

Stanley, E.H., et al. (2016) The ecology of methane in streams and rivers: patterns, control, and global significance, *Ecol Monogr*, 86(2): 146-171.

Wollheim, W.M, et al. (2015) Removal of terrestrial DOC in aquatic ecosystems of a temperate river network, Geophys Res Lett, 42(16): 6671-6679.

