Radiation Belt Precipitation and the Atmospheric Impact

<u>Chia-Lin Huang</u>¹, Harlan E. Spence¹, Katharine Duderstadt¹, Sonya Smith¹, Alex Boyd², Geoff Reeves², J Bernard Blake³, J. F. Fennell³, Seth Claudepierre³, Drew Turner³, Alex Crew⁴, David M Klumpar⁵, Mykhaylo Shumko⁵, Arlo Johnson⁵ and John Sample⁵

¹University of New Hampshire, ²Los Alamos National Laboratory, ³Aerospace Corporation, ⁴Applied Physics Laboratory, ⁵Montana State University

1. Motivation and Goal

<u>Motivation</u>: Do radiation belt electrons provide a missing source of HO_x and NO_x with implications for O_3 reduction in the upper and middle atmosphere? (*Randall et al.*, 2015)

<u>Goal</u>: Estimate the precipitation flux and energy spectrum of radiation belt electrons and quantify the contribution of electron precipitation to atmospheric chemistry

2. Flux Ratio of Precipitated and Trapped Electrons

- NSF FIREBIRD: High time resolution at critical energies in the loss cone at low Earth orbit
- NASA Van Allen Probes (RBSP): Continuous coverage in the radiation belt near equator

Compare FIREBIRD & Van Allen Probes at Conjunctions

- To quantify poorly known global radiation belt precipitation
- 35 quality conjunctions from 14 FIREBIRD campaigns
- Calculate flux ratio between precipitated and trapped electrons
- Scaled Van Allen Probes data to provide more global, more continuous time series of precipitation

Flux ratios from 35 FB-RB conjunctions

Flux ratios as function of Energy

3. Selecting Radiation Belt Electron Loss Event

Total radiation belt electron content: (TRBEC) - a simple and global index to represent RB electrons by integrating the phase space density data from RBSP-ECT MagEIS data

2013 March 3- 14 event: long-quiet decay without or little magnetopause shadowing loss

4. Atmospheric Impact from RB Electron Precipitation

- Whole Atmosphere Community Climate Model (WACCM)
- Ion pair production rate: comparable to solar protons near 70 km
- Northern hemisphere polar vortex-averaged NO_x enhancement x(~100%) and O₃ reduction (~20%) compared to simulations without radiation belt electron input

Contact: Chia-Lin.Huang@unh.edu

5. Summary

- We estimated radiation belt electron precipitation flux and energy spectrum using FIREBIRD and Van Allen Probes data
- We quantified the contribution of electron precipitation to atmospheric chemistry: 20% reduction of O₃ in stratosphere from moderate RB electron precipitation

