

Background

- Fluvial ecosystems can be quantitatively significant sources of CH₄ and N₂O
- Collective emissions may offset terrestrial carbon sink
- Considerable uncertainty remains in regional and global estimates of greenhouse gas (GHG) emissions from streams
- Controls on GHG concentrations (water chemistry, sediment characteristics) are poorly understood
- What controls spatial and temporal variability in CH₄ and N₂O across streams of varying land use?

Methods

Monthly sampling at 20 sites

- Surface water
- DOC, TDN, NO₃⁻, NH₄⁺, PO₄³⁻, cations & anions
- Dissolved gas
 - CH_4 , N_2O

Controls on greenhouse gas production in streams across a land use gradient

Allison Herreid, Adam Wymore, Ruth Varner, and William H. McDowell University of New Hampshire Contact: ah1208@wildcats.unh.edu

Results

Figure 1. Boxplot panels represent $N_2O(A)$ and $CH_4(B)$ concentrations across 12 months at 20 sites. Ordered by decreasing N₂O concentration.

Figure 2. Mean $N_2O(A)$ and $CH_4(B)$ concentrations across 20 sites over time. The dashed line represents standard error.

Thanks to the members of the Water Quality Analysis Lab for help with sample analysis, data analysis and interpretation, and support throughout my graduate studies. This research was supported by StreamPULSE, NSF Macrosystems Biology 1442444 and the NH Water Resources Research Center.

References

@Aquatic_Allison @UNHWaterQuality

Conclusions

- Differences in seasonal patterns of CH_4 and N_2O concentrations Variability of CH₄ concentrations unexplained by a single predictor variable
- Elevated NO₃⁻ concentrations
 - result in higher concentrations of
- Influence of K⁺ on N₂O?
 - Reduction of NO to N₂O catalyzed by K¹
 - K increases N reductase enzyme activity^{2,3}

Emerging Questions

- What role do sediment
- characteristics play in greenhouse gas production?
- At low N₂O concentrations, what controls the variability in CH_4 ? • Does potassium play a role in N_2O dynamics?

Acknowledgements