
SPAITR Map
Elvis Hidalgo, Elijah Johnson, Dan Kirichok

Department of Computer Science, University of New Hampshire, Durham, NH 03824

SPAITR Map is a mobile app where nearby lacrosse players can 
coordinate pick-up lacrosse games locally. 

This is designed to be an extension of the main SPAITR app which 
provides lacrosse players with their game data to optimize 
improvement.

With the SPAITR Map, lacrosse players can organize lacrosse 
games and play with new people more easily. The overall goal is 
to strengthen community involvement in lacrosse and to help the 
SPAITR app gain more users.

Functional Requirements
▪ Allow players to schedule a pick-up lacrosse game to happen

at a location
▪ Let players specify relevant game options like time, date, and

total expected players
▪ Let other players see active games and join them
▪ Let players control who their games are visible to on the map
▪ Provide a history of where games were played in the past to

determine popular locations

Non-Functional Requirements
▪ App must be compatible with iOS and Android
▪ Updates of new game information should be received at an

interval of ~10 seconds

Security
▪ Authentication system needed to determine player identity

and handle malicious activity

What is SPAITR Map?

Project Results

Next Steps

We couldn’t test the value of the project for SPAITR since we 
didn’t get to integrate it with the main SPAITR app due to time 
constraints. In the future, we hope to use analytics to track how 
users are using the SPAITR Map to better understand the value it 
provides.

Finished features
▪ A player can schedule a game to happen at a location 

▪ Other players on separate devices can see and join games on 
an interactive map

▪ Implemented algorithm to determine relevant nearby games 
to the player based on location

▪ Backend server created to support necessary REST API calls 
that the SPAITR Map app can use

Architecture

A client-server communication model is used for the SPAITR Map (client) to stay in-sync and 
exchange information with the Flask server.

Process
1. The SPAITR Map app sends REST calls to the Python Flask server through Flutter’s HTTP library 

based on the user’s inputted actions
2. The Flask server queries or updates the MongoDB database and sends back any necessary 

information based on the request
3. Once the SPAITR Map receives the server response for its respective query, it parses the JSON and 

displays a visual update to the screen

Sponsors:
▪ Nicolas Silberstein Camara
▪ Joey Neleber

Advisor: 
▪ Professor Benedetto

In collaboration with SPAITR

Acknowledgements

Requirements

▪ Add feature where users can see popular spots for previous 
games

▪ Add login support for improved security and player tracking

▪ Add privacy functionality where users can restrict their 
scheduled game and block other users

▪ Integrate with SPAITR app and use analytics to track how 
users are interacting with the map

Design

Map with nearby games 

A player can scroll and find 
games of interest to play.

Create game with options 

A player can choose to 
organize a game to happen at 
a specific time, day, and place.

Menu to join game 

If a player wants to join a 
game, they can see its details 
and confirm their attendance.

Diagram of client/server communication between SPAITR Map, server, and database

Measurable Organizational Value

The SPAITR Map is going to be successful if at least 30% of 
current SPAITR users use the SPAITR Map to play pickup games 
with a consistent turn out of at least 5 players per game by the 

end of the Spring 2022 semester.

Client
Unit tests were used to test core client functionality like game 
validation and the REST controller. When required, partial 
mocking was used to replicate complex objects like the server to 
help isolate the testing of functionality like JSON parsing.

Server
Unit tests were used to test main REST functionality with the client 
application. Interacting with the database was done with unit tests 
and confirming the data was correct was done both manually and 
through the unit tests.

Testing

▪ Flutter/Dart: Library used for mobile app development. Can
be built into both an iOS and Android app.

▪ Flask: Backend library used for server to communicate with
app and database.

▪ MongoDB: Database used to store user information in the app.

Tools


